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Abstract

In the search engine environment, users submit queries according to their infor-
mation needs. In response to a query, the system retrieves and displays a list of
documents which it considers of interest to the user. The user analyzes the re-
trieved results and decides what information is actually relevant to the information
need. However, for some queries, the retrieved documents may not satisfy the user.
Queries for which the search engine is not able to deliver relevant information are
called difficult queries. Query difficulty represents the research context of this the-
sis. More specifically, we aim at adapting the information retrieval systems with
respect to query difficulty, in order to improve the quality of search.

Term ambiguity may be the cause of query difficulty. For example, the query
"orange" is ambiguous, since the engine does not know whether it refers to the fruit,
to the color, or to the telephone company. As a first contribution, we have developed
a re-ranking method for retrieved documents, based on query term disambiguation,
in order to obtain better retrieval performance. This method works best on difficult
queries, result that motivates our research in query difficulty prediction.

If it was possible to anticipate the difficulty of a query, the difficult queries
could be handled in a special manner in order to optimize retrieval results. This
observation, corroborated with the findings of our first contribution, led us to our
second contribution, on the query difficulty. State-of-the-art predictors are not
accurate enough for real applications. Thus, we propose combinations based on
linear interpolations of difficulty predictors to improve the prediction quality of
individual predictors.

Retrieval results can also be improved by the query expansion process which
adds terms to the original query. Even if the query expansion is effective on average
over several queries, some of the queries may be degraded. It would be interesting to
know how to expand each query in order to improve performance. Our third contri-
bution is an automatic learning method to classify queries by two query expansion
variants. Learning is done on features extracted from query difficulty predictors.

Our fourth and last contribution represents an analysis conducted on the pa-
rameter optimization in the case of a query expansion model. The parameter that
we aim to optimize adjusts the impact of the original query in the expanded query.
We test several hypotheses with and without prior information, such as learning,
pseudo relevance judgments, logistic regression and similarity measures. The results
show that this optimization remains a difficult problem.





Résumé

Dans l’environnement des moteurs de recherche, les utilisateurs saisissent des re-
quêtes en fonction de leurs besoins d’information. En réponse à une requête, le
système récupère et affiche une liste de documents qu’il considère comme sus-
ceptibles d’intéresser l’utilisateur. L’utilisateur consulte les documents retrouvés
et décide quelles informations sont réellement pertinentes par rapport au besoin
d’information. Toutefois, les documents retrouvés pour certaines requêtes peuvent
ne pas être satisfaisants pour l’utilisateur. Les requêtes pour lesquelles le moteur
de recherche n’arrive pas à délivrer l’information pertinente sont appelées difficiles.
La difficulté des requêtes représente le contexte de recherche de cette thèse. Nous
visons plus spécifiquement à adapter le système de recherche d’information par
rapport aux requêtes difficiles, afin d’améliorer la qualité de la recherche.

L’ambiguïté des termes peut-être la cause de la difficulté. Par exemple, la
requête "orange" est ambiguë, puisque le moteur ne sait pas si elle se réfère au fruit,
à la couleur, ou à la compagnie téléphonique. Comme première contribution, nous
avons développé une méthode de ré-ordonnancement des documents retrouvés basée
sur la désambiguïsation des termes des requêtes, dans le but d’obtenir de meilleurs
résultats de recherche. Cette méthode fonctionne mieux sur les requêtes difficiles,
résultat qui motive nos recherches dans la prédiction de la difficulté.

S’il était possible pour d’anticiper la difficulté d’une requête, les requêtes diffi-
ciles pourraient être traitées d’une manière particulière pour optimiser les résultats
de recherche. Cette observation, complétée par les conclusions de notre première
contribution, nous a menés vers notre deuxième contribution, sur la prédiction de
la difficulté des requêtes. Les prédicteurs de l’état de l’art ne sont pas suffisam-
ment précis pour des applications réelles. Ainsi, nous proposons des combinaisons
basées sur des interpolations linéaires des prédicteurs de difficulté afin d’améliorer
la qualité de prédiction.

Les résultats de recherche peuvent aussi être améliorés par l’expansion de re-
quête, procédé qui rajoute des termes à la requête initiale. Même si l’expansion de
requêtes est efficace en moyenne sur plusieurs requêtes, certaines requêtes peuvent
être dégradées. Il serait donc intéressant de savoir comment réaliser cette expansion,
pour chaque requête afin d’obtenir de meilleures performances de recherche. Notre
troisième contribution est une méthode automatique d’apprentissage pour classifier
les requêtes selon deux variantes d’expansion de requêtes. L’apprentissage est fait
sur des caractéristiques extraites à partir des prédicteurs de difficulté.

Enfin, notre quatrième contribution représente une analyse portée sur l’optimi-
sation d’un paramètre afin d’améliorer un modèle d’expansion des requêtes. Ce
paramètre ajuste l’importance de la requête initiale dans le modèle étendu de re-
quête. Nous vérifions plusieurs hypothèses sans et avec information a priori, comme
l’apprentissage, les pseudo jugements de pertinence, la régression logistique et les
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mesures de similarité. Les résultats montrent que cette optimisation reste un prob-
lème difficile.



General introduction

The field of information retrieval (IR) studies the mechanisms to find relevant infor-
mation in one or more document collections, in order to satisfy a user’s information
need. For an IR system, the information to find is represented by "documents" and
the information need takes the form of a "query" formulated by the user.

The performance of an IR system depends on queries. Queries for which IR
systems fail (little or no relevant documents retrieved) are called in the literature
"difficult queries". This difficulty may be caused by term ambiguity, unclear query
formulation, the lack of context for the information need, the nature and structure
of the document collection, etc.

This thesis aims at adapting IR system to contexts, particularly in the case
of difficult queries. The manuscript is organized into five main chapters, besides
acknowledgements, general introduction, conclusions and perspectives.

The first chapter is an introduction to IR. We develop the concept of relevance,
the retrieval models from the literature, the query expansion and the evaluation
framework used in the experiments, which were used to validate our proposals.
Each of the following chapters presents one of our contributions.

Each of the following chapters raises the research problem, indicates the related
work, our theoretical proposals and their validation on benchmark collections.

In chapter two, we present our research on treating the ambiguous queries. The
query term ambiguity can indeed lead to poor document retrieval of documents
by the search engine. In the related work, the disambiguation methods that yield
good performance are supervised [Zhong 2012], however such methods are not ap-
plicable in a real IR context, as they require the information which is normally
unavailable. Moreover, in the literature, term disambiguation for IR is declared
under optimal [Sanderson 1994], [Guyot 2008]. In this context, we propose an un-
supervised query disambiguation method and show its effectiveness. Our approach
is interdisciplinary between the fields of natural language processing and IR. The
goal of our unsupervised disambiguation method is to give more importance to the
documents retrieved by the search engine that contain the query terms with the
specific meaning identified by disambiguation. This document re-ranking offers a
new document list that contains more relevant documents to the user. We evaluated
this document re-ranking method after disambiguation using two different classifi-
cation techniques (Naïve Bayes [Chifu 2012] and spectral clustering [Chifu 2015],
over three document collections and queries from the TREC competition (TREC7,
TREC8, WT10G). We have shown that the disambiguation method we proposed
works specifically well in the case of poorly performing queries (7.9% improvement
compared to state-of-the-art methods).

In chapter three, we present the work focused on query difficulty prediction.
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Indeed, if term ambiguity is a difficulty factor, it is not the only one. We completed
the range of difficulty predictors by relying on the state-of-the-art predictors that
are divided in two main categories: pre-retrieval and post-retrieval predictors. Post-
retrieval predictors need the results of the retrieval process, such as document scores,
or retrieved document ranks. The existing predictors are not sufficiently effective
and stable to be used in concrete applications and therefore we introduce two new
difficulty prediction measures that combine predictors by interpolating the value of a
pre-retrieval predictor with the value of a post-retrieval predictor. Other researchers
such as [Hauff 2009] or [Kurland 2012], have studied predictor combinations, but in
different manners. We also propose a robust method to evaluate difficulty predictors.
Using predictor combinations, on TREC7 and TREC8 collections, we obtain an
improvement of 7.1% in terms of prediction quality, compared to the state-of-the-
art [Chifu 2013].

In the fourth chapter we focus on the application of difficulty predictors. Specifi-
cally, we proposed a selective IR approach, that is to say, predictors are employed to
decide which search engine, among many, would perform better for a query. In the
literature, various applications employed learning based on predictors in different
domains, such as cross-language Information Retrieval [Lee 2014], or query routing
in the case of domain specific collections [Sarnikar 2014]. Our decision model is
learned by SVM (Support Vector Machine). We tested our model on TREC bench-
mark collections (Robust, WT10G, GOV2). The learned model classified the test
queries with over 90% accuracy. Furthermore, the research results were improved
by more than 11% in terms of performance, compared to non-selective methods
[Chifu 2014].

In the last chapter, we treated an important issue in the field of IR: the query
expansion by adding terms. It is very difficult to predict the expansion parameters
or to anticipate whether a query needs the expansion or not. We present our contri-
bution to optimize the lambda parameter in the case of RM3 (a pseudo-relevance
model for query expansion), per query. Lv et. al [Lv 2009] tried to solve the same
optimization problem by the means of regression, without obtaining conclusive re-
sults. We manage to overcome their results, but our methods that surpass their
performance require prior information. We tested several hypotheses, both with
and without prior information. We are searching for the minimum amount of in-
formation necessary in order for the optimization of the expansion parameter to
be possible. The results are not satisfactory, even though we used a wide range
of methods such as SVM, regression, logistic regression and similarity measures.
Some improvements with respect to baselines are noticeable. However, these im-
provements are not important enough to declare the problem as solved. Therefore,
these findings may reinforce the conclusion regarding the difficulty of this optimiza-
tion problem. The research was conducted not only during a three months research
mobility at the Technion Institute in Haifa, Israel, in 2013, but thereafter, keep-
ing in touch with the team of Technion. In Haifa, we worked with Professor Oren
Kurland and PhD student Anna Shtok.
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In conclusion, in this thesis we propose new methods to improve the perfor-
mance of IR systems, based on the query difficulty. The results of the methods
proposed in chapters two, three and four show significant improvements and open
perspectives for future research. The analysis in chapter five confirms the difficulty
of the optimization problem of the concerned parameter and encourages thorough
investigation on selective query expansion settings.

In order to ease the reading, the lists of abbreviations, figures and tables are
integrated at the beginning of this manuscript.
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In this chapter we introduce the notions used throughout the entire manuscript.
We start from the concept of relevance and its meaning. Thus, we discuss the con-
cepts of relevance and evaluation in IR, the query expansion principles and models,
we present the benchmark collections and the framework we used to implement our
models.

1.1 Relevance

Humans have always been interested in knowing and their curiosity yielded the dis-
coveries that lead to progress. A Latin aphorism says that "knowledge is power"1

and the key for this knowledge is information. However, with the amount of infor-
mation exponentially growing around us, finding good information has become a
difficult task. The access to relevant information depends on the given task, on the

1"Scientia potentia est"
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speed of retrieval, etc. In this context, computer science researchers from the field
of Information Retrieval (IR) propose models in order to obtain information. "IR
deals with the representation, storage, organization of, and access to information
items" [Baeza-Yates 1999]. The organized information items and their representa-
tion should provide easy access to relevant information. From the IR point of view,
relevance would represent how well a retrieved document (or set of documents)
satisfies the information need a user has.

Relevance also represents a concept that appears in other fields of study, such
as logic, library, cognitive sciences and information science. A definition given
by researchers in socio-cognitive area would sound as follows: "Something (A) is
relevant to a task (T) if it increases the likelihood of accomplishing the goal (G),
which is implied by T" [Hjörland 2002].

The relevance of retrieved information has always preoccupied scientists and, in
the 1950s, with the appearance of the first IR systems [Mooers 1950], researchers
underlined the issue of retrieving irrelevant articles. B.C. Vickery explicitly men-
tioned the concept of relevance in 1958 at the International Conference on Scientific
Information [Mizzaro 1997].

However, relevance is not of a single type, there are many kinds of relevance. In
his paper [Mizzaro 1997], Mizzaro establishes a framework to classify the various
types of relevance and defines two groups of entities. Relevance may be seen as the
relation between no matter which two entities, each coming from one of the defined
groups.

The first group contains the document, as a physical entity, its representation
and the information, which represents what the user obtains while reading a docu-
ment.

On the other hand, the second group has the following entities: the problem
that a human is facing and that requires information in order to be solved, the
information need, which is a representation of the problem, the request that is a
human language representation of the information need and finally the query which
is a representation of the information need in the language of computers.

Nevertheless, the IR process can be splitted in three components, which are topic
(the subject area of interest), task (users activity with the retrieved documents) and
context (everything that affects the way search and its evaluation take place).

The retrieval mechanism considers the query, which represents the information
need, and matches it with the document representations. Then, the best candidate
documents from the matching process are considered relevant by the system, thus
they are proposed to the user. This scenario so far is a static one, however the IR
process is englobed in a time interval, meaning that the time factor should be taken
into account. For instance, a document may be irrelevant to a query, yet the same
document may become relevant for the same query at a different time.

Thus, relevance can be seen as a point in a four-dimensional space that has the
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following dimensions [Mizzaro 1997]:

• document, surrogate, information;

• problem, information need, request, query;

• topic, task, context;

• the various time instances from the time elapsed between the appearance of
the problem and its solution.

Having all these factors involved, there is place for errors. It is known that the
user’s information needs are formally expressed by queries which are submitted to
an information retrieval system (IRS), in order to retrieve documents. For example,
if a query does not represent well enough the user’s information need, the search
results will be poor. Therefore, badly formulated queries, or ambiguous queries,
affect the retrieval performance. All queries that lead the IRS to performance
failure are called difficult queries. Details on query difficulty will be provided in
Chapter 3, which treats the matter of query difficulty prediction. Moreover, various
systems can respond differently to submitted queries and it would be interesting
to find out which system treats best a specific query. This represents the system
variability issue in IR, reported in [Harman 2009]. We mention that query difficulty
and system variability are challenges treated in this thesis. The system variability
is related to a key factor for IR performance, which is the choice of the retrieval
model.

In the following section we present several retrieval models from the literature
that match documents to queries with the purpose of proposing presumably relevant
information to users.

1.2 IR models

We present here several models employed to match documents and queries. The first
model was proposed in the 70s by Lancaster in [Lancaster 1974] and it is called the
boolean model. Based on the set theory, this model retrieves the documents which
contain the query terms joined by logical operators, such as "OR", "AND", or "NOT".
Even though this model has a clean formalism and its concept is intuitive and
easy to implement, this exact matching method may retrieve too few or too many
documents. Moreover, all terms are equally weighted and the output documents are
difficult to rank. This is the reason why more recent models generally compute a
similarity score between a document and a query, which is used to rank all retrieved
documents for a query.

We present in the following sections the vector space model [Salton 1975], the
BM25 model [Robertson 1994], the language model [Ponte 1998] and the divergence
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from randomness (DFR) models [Amati 2002], in order to provide a brief outline of
IR models. The vector space and the BM25 models are described here because they
represent milestones in IR. On the other hand, DFR models are employed in this
thesis in Chapter 2 as retrieval models for strong baselines. The language model
is used in Chapter 4 for selective query expansion and in Chapter 5 for parameter
optimizing in language model-based query expansion.

The vector space model represents the document and the query as vectors in
the term space and employs the cosinus measure to determine their similarity.

The probabilistic models, such as the BM25 model, the DFR models, or the
language model, are based on the probability theory to measure the query-document
similarity.

1.2.1 Vector space model

The vector space model [Salton 1975] allows to compute a similarity score between
a query and a document. Queries and documents are represented by weight vectors
of their terms. The ranking score is expressed by the cosinus between the query
vector and the document vector (Definition 1).

The relevance score of a document di with respect to a query q is given by
the cosinus similarity measure between the two vectors, as follows:

s (q,di) =
∑m

t=1 (wtq · wti)√∑m
t=1 (wtq)2

√∑m
t=1 (wti)2

, (1.1)

where m is the number of terms, wtq represents the weight of the term t

in the query q, wti is the weight of the term t in the document di and
q = [w1q . . . wmq] and di = [w1i . . . wmi] are the representations in the term
vector space, for the query q and for the document di, respectively.

Definition 1 (The vector space model)

The term weight is expressed by the TF .IDF weight [Robertson 1976]. The
TF.IDF measure is defined using the Term Frequency (TF) and Inverse Document
Frequency (IDF).

The TF represents the number of occurrences of a term in a document (or in a
query).

The IDF represents the importance of a term from an entire set of documents
(called corpus) and it is computed as follows:

IDF (t) = log
(

N

nt + 1

)
, (1.2)
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where N is the total number of documents and nt represents the number of doc-
uments that contain the term t. Thus, the TF .IDF weighting of a term t in a
document di is the product between TF and IDF:

TF · IDF (t, di) = TF (t, di) · IDF (t) (1.3)

This term weighting method considers that not all terms have the same dis-
criminating power. The term importance is defined based on their frequency in
documents, thus the terms which are too frequent are penalized.

The probabilistic models, such as BM25, DFR and language models, are more
recent and are considered as more effective than the vector space model.

1.2.2 Okapi BM25 model

Robertson and Walker have proposed in 1994 the Okapi BM25 system, which used
the BM25 probabilistic model [Robertson 1994]. This family of relevance models
defines the similarity score s (q, di) between a query q and a document di using the
relevance and non relevance probabilities of documents, as follows:

s (q, di) = P (R|di)
P
(
R̄|di

) , (1.4)

where P (R|di) is the probability that the document di is relevant for the query q,
while P

(
R̄|di

)
is the probability that di is not relevant for q. This score could be

expressed as the sum of relevance weights wj for the terms tj (with j ∈ {1, . . . ,m})
found in the document:

s (q, di) =
m∑

j=1
wj1{tj∈di}, (1.5)

where 1{tj∈di} is the characteristic function which takes the value 1 if the term tj is
relevant for the document di and 0, otherwise. The relevance weights are expressed
by relevance probabilities of terms for the document.

In [Robertson 1994] are proposed several approximations for these probabilities.
The most commonly used version is the BM25 model (see Definition 2), based on
TF and IDF .

The BM25 is widely used as baseline in IR, since it yields good results. Another
widely employed probabilistic model, the divergence from randomness, is presented
in the following section.
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The similarity score of the BM25 model between a query q and a document
di, denoted BM25 (q, di), is defined as follows:

BM25 (q, di) =
m∑

j=1

IDF (tj) · TF (tj , di) · (k1 + 1)

TF (tj , dj) + k1 ·
(

1 − b+ b
|di|
avdl

) , (1.6)

where TF and IDF are those defined in Section 1.2.1, |di| is the number
of terms in the document di, k1 and b are tuning parameters and avdl

represents the average of term numbers, for all documents in the corpus.

Definition 2 (The BM25 model)

1.2.3 Divergence from randomness model

The divergence from randomness (DFR) model [Amati 2004a] represents a gener-
alized version of Harter’s 2-Poisson indexing-model [Harter 1974]. The 2-Poisson
model is one of the first IR models and is based on the hypothesis that the level of
treatment of the informative terms is endorsed by a representative set of documents,
in which these terms occur more often than in the rest of the documents.

Of course, there are terms that do not possess representative documents, and
thus their frequency follows a random distribution. This is the single Poisson
model. Harter’s model, combined with the standard probabilistic model proposed
by Robertson and Walker in [Robertson 1994], yielded the BM family of models,
from which we mention the BM25 model, described in the previous section.

The idea behind the DFR models is the following: the divergence of the within-
document term-frequency from its frequency within the collection is directly propor-
tional with the information carried by the term t in the document di. Therefore, the
term-weight is inversely proportional to the probability of term-frequency within
the document di obtained by a randomness model M , as follows:

DFR (q, di) ∝ −logProbM (t ∈ di|Collection) , (1.7)

where M stands for the type of model of randomness used to compute the proba-
bility. IR is thus seen as probabilistic process, equivalent to the random placement
of coloured balls into urns. Here, the balls are the terms and the urns are the doc-
uments, respectively. There are several models to choose M , which provide a basic
DFR model. The basic models are presented in Table 1.1.

For the model M represented by the binomial distribution (P ), the basic model
formalized in Definition 3.
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Table 1.1: Basic DFR models

Notation Model
D Divergence approximation of the binomial
P Approximation of the binomial
BE Bose-Einstein distribution
G Geometric approximation of the Bose-Einstein
I (n) Inverse Document Frequency model
I (F ) Inverse Term Frequency model
I (ne) Inverse Expected Document Frequency model

The DFR model based on the approximation of the binomial, for a term t

in a document di, denoted by P , is defined as follows:

− logProbP (t, di|Collection) = −log
(
tf

TF

)
pT F qtf−T F , (1.8)

where TF is the one defined in in Section 1.2.1, tf is the term-frequency
of the term t in the Collection, N is the number of documents in the
Collection and p = 1/N and q = 1 − p.

Definition 3 (DFR - binomial distribution P )

Similarly, if the model M is the geometric distribution, then the basic model G
is formalized in Definition 4.

The DFR model based on the geometric distribution, for a term t in a
document di, denoted by G, is defined as follows:

− logProbG (t, di|Collection) = −log
(( 1

1 + λ

)
·
(

λ

1 + λ

)T F
)
, (1.9)

where tf is the term-frequency of the term t in the Collection, N is the
number of documents in the Collection and λ = F/N .

Definition 4 (DFR - geometric distribution G)

TF can be normalized as follows:

TFn = TF · log
(

1 + c · sl
dl

i

)
, (1.10)

where dl
i represents the length of document di, sl stands for standard document

length and c is a free parameter.
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In the following section we present the language model, which also represents a
widely used probabilistic model.

1.2.4 Language model

In 1998, Ponte proposed the application of language models in IR [Ponte 1998].
The idea is to associate each document to its characterizing model, which allows to
compute the probability that a term sequence would be generated from a document.
Considering a query q with m terms, then the probability that a document di is
relevant for q is equivalent to the probability P (q|di) that q has been generated
by the document di. Assuming that the terms are independent, one can compute
P (q|di), as follows:

P (q|di) =
m∏

j=1
P (tj |di) , (1.11)

where tj are query terms, with j ∈ {1, . . . , }. The most straightforward estimator for

P (tj |di) is the maximum likelihood, PML (tj , di) = c (tj , di)∑m
k=1 c (tk, di)

, where c (tj , di) is

the occurrence number of the term tj in the document di. There is a major downside
for this estimator which is the fact that it assigns a null probability for the terms
that are not present, thus, if a document contains all the query terms except for one,
its probability will be zero, even if in fact it potentially responds to a part of the
query. In order to solve this issue, several smoothing methods have been proposed.
Zhai et al. [Zhai 2001] have studied the properties of three smoothing methods:
Dirichlet, Jelinek-Mercer and the Absolute Discounting, presented in definitions 5,
6 and 7, respectively.

The probability that a term tj has been generated by the document di by
the Dirichlet smoothing is the following:

PDIR (tj |di) = c (tj , di) + µPML (tj |C)∑m
k=1 c (tk, di) + µ

, (1.12)

where PML (tj |C) = c (tj , C)∑m
k=1 c (tk, C)

, with c (tj , C) the occurrence number

of the term tj in the corpus C, is the maximum likelihood estimator for
P (tj |C), which represents the probability that the term tj has been gen-
erated by the corpus C. µ > 0 represents controlling parameter for the
smoothing.

Definition 5 (Dirichlet smoothing)
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The probability that a term tj has been generated by the document di by
the Jelinek-Mercer smoothing is the following:

PJM (tj |di) = (1 − λ)PML (tj |di) + λPML (tj |C) , (1.13)

where P (tj |di) and P (tj |C) represent the probability that the term tj
has been generated by the document di and by the corpus C, respec-

tively. PML (tj |di) = c (tj , di)∑m
k=1 c (tk, di)

, with c (tj , di) the occurrence number

of the term tj in the document di, is the maximum likelihood estimator
for P (tj |C), which represents the probability that the term tj has been

generated by the corpus C. PML (tj |C) = c (tj , C)∑m
k=1 c (tk, C)

, with c (tj , C) the

occurrence number of the term tj in the corpus C, is the maximum likeli-
hood estimator for P (tj |C), which represents the probability that the term
tj has been generated by the corpus C. λ ∈ [0, 1] represents a smoothing
factor.

Definition 6 (Jelinek-Mercer smoothing)

The probability that a term tj has been generated by the document di by
the Absolute Discounting smoothing is the following:

PABS (tj |di) = max (c (tj , di) − δ, 0) + δ |di|u∑m
k=1 c (tk, di)

, (1.14)

where c (tj , di) is the occurrence number of the term tj in the document
di, |di|u represents the number of unique terms in the document di and
δ ∈ [0, 1] is a constant which limits the importance of terms known by the
language model.

Definition 7 (Absolute Discounting smoothing)

In [Zhai 2001], the authors underline that the performance of language models
is very dependent on the parameter tuning and also it varies with the query type.
Thus, the Jelinek-Mercer smoothing yielded better results on long queries, as op-
posed to the other smoothing methods. However, it is difficult to decide which
method is globally more efficient. Parameter optimization for language models is a
matter also treated in this thesis (see Chapter 5).

Retrieval models have advanced significantly from the beginning to present day
and researchers still seek for methods to push the limits of performance improve-
ment. It is known that producing the query from the information need represents a
crucial step for a successful retrieval [Lee 2009]. For this reason, there is research on
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query refinement, reformulation and expansion. Adding useful terms to an initial
query should improve, in theory, the quality of the retrieved results. We discuss the
query expansion process in the following section.

1.3 Query expansion

"The relative ineffectiveness of IR systems is largely caused by the inaccuracy with
which a query formed by a few keyword models the actual user information need"
[Carpineto 2012]. A solution for this issue is Query Expansion (QE), where the
initial query is augmented by new similar meaning features.

The logical operator "OR" implicitly connects the query terms in most document
ranking models. Having this in mind, one query expansion advantage is that there
is more chance to retrieve a relevant document that does not contain some of the
original query terms, fact which improves recall. However, the added terms may
cause query drift, losing the focus of a search topic, involving a loss in precision.
On the other hand, the effectiveness of IR systems is usually evaluated taking into
account both recall and precision and in this context, improvements of more than
10% have been reported [Mitra 1998], [Liu 2004], [Lee 2008]. In [Mitra 1998], the
authors used manually formulated boolean filters to help automatic QE via ad hoc
feedback. They have tested their method on Text REtrieval Conference (TREC) 3-
6 collections, with improvements between 6% and 13%. Liu et al. [Liu 2004] tested
their method to propose candidate expansion terms on TREC 9, 10 and 12. The
method uses WordNet to disambiguate the word senses for the query terms and its
synonyms, hyponyms together with words from the definitions become candidate
terms. The authors have reported 23%-31% of improvements. Another method,
proposed in [Lee 2008], employed cluster-based resampling in order to obtain better
pseudo-relevant documents for feedback. The authors have tested the method on
TREC collections (GOV2, WT10G, Robust) with improvements between 6% and
26%. These claims support the hypothesis that QE is beneficial for IR, but these
techniques might not suffice for approaches mainly interested in improving precision.

Moreover, these improvements are reported in average, over multiple queries.
This means that performance of some queries, in terms of AP, may decrease after
expansion [Sakai 2005]. Therefore, the performance of a QE system should be also
checked whether it is robust, or not. Sakai et al. [Sakai 2005] have proposed a
measure called Robustness Index, which takes into account the number of queries
that are harmed by expansion and the queries that are improved by expansion.
This measure is normalized by the total number of queries and the possible values
are between -1 and 1. The value 1 characterizes the most robust results, with no
queries harmed by the process of expansion. Contrarily, the value -1 suggests that
all queries have a decreased AP after expansion. The Robustness Index is defined
as follows:
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For a set of queries Q the Robustness Index (RI) is computed by the for-
mula:

RI (Q) = n+ − n−
|Q|

, (1.15)

where n+ is the number of improved queries, n− the number of degraded
queries and |Q| the total number of queries.

Definition 8 (Robustness index)

There are several techniques to generate and rank the candidate expansion terms.
We discuss here about the analysis of feature distribution in top-ranked documents
and about the query language modeling.

The idea for the feature distribution in top-ranked documents is to assume that
the first retrieved documents in response to the original query are relevant (Pseudo-
Relevance Feedback [Buckley 1994]). Expansion terms are extracted from these
documents. Of course this process is highly dependent on the quality of the top
retrieved documents. We present the main term-ranking functions based on term
distribution for a set of pseudo-relevant documents in Table 1.2. The notations are
the following: w(t, d) is the weight of a term t in pseudo-relevant document d, P (t|R)
and P (t|C) represent the probability of occurrence of t in the set of pseudo-relevant
documents R and in the whole collection C, respectively.

Table 1.2: Main term-ranking functions based on the analysis of term distribution in pseudo-
relevant documents by [Carpineto 2012]

Reference Function Mathematical formula
[Rocchio 1971] Rocchio’s weights

∑
d∈R

w(t, d)

[Robertson 1976] Binary independence model (BIM) log
P (t|R)[1 − P (t|C)]
P (t|C)[1 − P (t|R)]

[Doszkocs 1978] Chi-square [P (t|R) − P (t|C)]2

P (t|C)
[Robertson 1990] Robertson selective value (RSV)

∑
d∈R

w(t, d) · [P (t|R) − P (t|C)]

[Carpineto 2001b] Kullback-Leibler distance (KLD) p(t|R) · log
P (t|R)
P (t|C)

From the query language modeling we present here the relevance model proposed
in [Lavrenko 2001], called Relevance Model 1 (RM1), because it is a widely used
model and, moreover, we employ it in our experiments in chapters 4 and 5. Lavrenko
and Croft use the query likelihood P (q|d) as the weight for document d and they
consider an average of the probability of term t given by each language model of
documents. The formula to compute RM1 is the following:

PRM1 (t|q) ∝
∑

θd∈Θ
P (t|θd)P (θd)

m∏
i=1

P (qi|θd) , (1.16)
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where Θ represents the set of smoothed document models in the pseudo-relevant
document set R and q = {q1, q2, . . . , qm}. In RM1, the Dirichlet smoothing method
is used to smooth the language model of each pseudo-relevant document θd.

The relevance model PRM1 (t|q) can be interpolated with the model of the initial
query θq in order to obtain performance improvements [Abdul-Jaleel 2004]. There-
fore, this interpolated relevance model, called Relevance Model 3 (RM3), is com-
puted as follows:

PRM3
(
t|θ′

q

)
= (1 − λ)P (t|θq) + λPRM1 (t|q) (1.17)

We use RM1 and RM3 later on in our experiments, since they yield effective
retrieval results, thus they represent strong baselines.

There is no optimal way to automatically expand the queries and the automatic
QE process may actually harm system performances. However, when the right
choices are made and when the parameters are properly tuned, the expansion is
beneficial. For instance, in [Lv 2009] the authors aimed to optimize the balance
parameter (λ from RM3 interpolation), by the means of logistic regression. Their
improvements were, however, very close to the baseline (from 0.340 to 0.356 over
TREC6, TREC7 and TREC8). Therefore, tuning the λ parameter in the RM3
interpolation remains an open problem that we also try to approach in this thesis.

The information relevance to a topic is measured using benchmark collections
and the evaluation tasks started in the early 1960s with the Cranfield Experiments,
then continued to this day with the tracks from the Text REtrieval Conference
(TREC), which represents the main evaluation framework in IR. TREC is an an-
nual workshop hosted by the US government’s National Institute of Standards and
Technology which provides the necessary infrastructure for the large-scale evaluation
of text retrieval methods2. In the following sections we discuss the IR evaluation
and the benchmark collections.

We have introduced here the classic models of query expansion. For a more
detailed related work overview, see chapters 4 and 5.

1.4 Evaluation

The vector space model, the probabilistic model, or the language model, together
with their parameter tuning, combinations and variants, represent the wide variety
of IRS. This high rate of possible choices regarding IR algorithms raises the question
of which model is better.

Yet, the notion of "better" depends of various aspects, such as efficiency and
effectiveness. Firstly, the most common dimensions of system efficiency are time
and space. A better system from this point of view is one which yields a shorter

2http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=10667

http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=10667
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response time and one which uses a smaller hard disk space. These aspects rep-
resent the efficiency level of user satisfaction. The interface quality also plays an
important role for user satisfaction [Speicher 2014]. Secondly, there is the quality of
response according to the information need. This evaluation perspective measures
how well the system managed to retrieve relevant information, with respect to the
information need. This represents the effectiveness level of user satisfaction.

One approach to evaluate IRS, in terms of effectiveness, is the explicit feedback
by the means of user study. The assumption, in the case of an user study, is
that system performance and users’ satisfaction are proportional. For this type of
evaluation, users are hired, they complete some tasks using the systems and finally
they report their subjective feeling. Even if this type of performance evaluation is
close to reality, a user study is subjective and expensive in terms of time and money
[Kelly 2009]. Of course, experiments on a smaller scale could be set up, but this
implies biased results.

An alternative for the user study is the usage of test collections, built by fol-
lowing the Cranfield Paradigm. This paradigm was proposed in the early 1960s
at Cranfield College of Aeronautics, England by Cyril Cleverdon, who conducted
research on indexing methodologies and who showed that manual indexing was not
needed. He also developed this evaluation methodology, which was quickly adopted
by the IR community. The paradigm implies a test collection, which consists of a
static set of documents, a set of topics and the set of known relevant documents
for each of the topics, that is to say the relevance judgments. For the evaluation
process it is required for a system to retrieve documents from the collection, for each
topic. Evaluation measures are then applied on the retrieved list, on a per topic
basis, against the relevance judgments. The scores for each topic are averaged and
the resulting score represents the effectiveness score for the IRS. This evaluation
paradigm should have an exhaustive assessment, which is expensive and unpracti-
cal for nowadays large collections, therefore the assessment based on pooling was
introduced by TREC [Harman 1993] and it is employed in practice. The traditional
pooling method is to select documents for assessment by running a set of represen-
tative retrieval systems against the collection, and pool their top-ranked results.
The main advantage regarding the Cranfield approach is that the experiments are
reproducible and comparable, a fact very important in a research context, since we
need to test models and to compare performance with other systems.

Another facet of evaluation is the implicit feedback, based on user behavior
(such as clicks), which obtains relevance judgments from user behavior. The im-
plicit feedback, as the explicit feedback, also involves real users, it is cheaper than
the Cranfield paradigm and much larger in terms of sample size [Joachims 2002].
However, it yields user behavior noise and long-tail search distribution. The long-
tail distribution is induced by the existence of few popular choices together with
a high number of rarely chosen documents, probably due to the fact that the user
tends to click on the documents from the top of the retrieved list. The implicit
feedback uses a small proportion of traffic for evaluation in two alternative ways:
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by showing results from different retrieval methods alternatively, or by merging the
results into a document list.

Regarding the evaluation in IR, we may summarize that the ground-truth is
represented by the choice of real users, that method evaluation can be decomposed
into efficiency, effectiveness and interface quality, that reusable test collections are
useful and that user behavior (log) is really important and represents a kind of
wealth. In our research we use Cranfield paradigm-based benchmarks, since they
provide the full evaluation environment (documents, topics, relevance judgments).
Moreover, the evaluation in this context is reproducible and comparable, key factors
for research. On the other hand, robust user studies are expensive and difficult to
set up, therefore the explicit feedback is not appropriate to evaluate our work. The
click models and user logs, that is to say the implicit feedback, are more suitable for
the web environment. However, the implicit feedback represents a resource which
is not so often available and we do not employ click models and user logs in our
contributions.

In the following section we discuss the evaluation measures in the TREC context,
which employs the Cranfield Paradigm for evaluation.

1.4.1 Evaluation measures

In order to establish the effectiveness of an IRS, or to rank and compare systems,
various performance measures have been proposed in the literature. In TREC,
participant runs (see Section 1.4.5) are evaluated using the trec_eval package in
order to rank the participant systems. This package provides performance measures,
including some measures that are derived from the two basic measures in IR: recall
and precision. The precision is the fraction of the retrieved documents that are
relevant, while the recall represents the fraction of the documents relevant to the
query that are successfully retrieved. We describe here the precision at a cut-off
level (P@k), the Average Precision (AP) and the Mean Average Precision (MAP),
since they are widely employed by the IR community and we usee all of them in
our experiments.

The trec_eval package also implements the precision at certain cut-off levels.
A cut-off level is a rank that defines the retrieved set. For example, a cut-off level
of ten defines the retrieved set as the top ten documents in the ranked list (P@10).
These top precision measures are important in a real life context, where the user is
interested in the relevant documents among the first 5 or 10 retrieved documents.
For instance, in the case of a web search, users naturally tend to click on the links
from the top of the retrieved list, thus the need for improvements regarding these
particular top results. In our experiments, we use three cut-off levels: P@5, P@10
and P@30, which are high precision measures. The cut-off level precision is defined
in Definition 9.
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The precision P@k at a cut-off level k, for a query q, is defined as:

P@k(q) = |relev@k|
k

, (1.18)

where relev@k represents the set of relevant documents retrieved until the
rank k.

Definition 9 (Precision P@k)

Average Precision (AP) is widely used in the literature as it involves both pre-
cision and recall. By plotting the precision p(r) as a function of recall r, one would
obtain the precision-recall curve. The AP computes the average of p(r), over the
interval r ∈ [0, 1], as expressed in Equation 1.19:

AP =
∫ 1

0
p (r) dr (1.19)

Equation 1.19 represents the area of the surface below the precision-recall curve.
In practice, this integral is replaced with a finite sum over the positions in the rank
list of retrieved documents, as follows:

AP =
R∑

k=1
P@k∆r (k) , (1.20)

where R is the number of retrieved documents, k is the rank, P@k is the preci-
sion of the top k retrieved documents and ∆r (k) is the change in recall from two
consecutive retrieved documents k − 1 and k.

This sum is equivalent to Definition 10.

The Average Precision (AP) for a query q is defined as:

AP (q) =
∑R

k=1 [P@k × rel (k)]
relev (q)

, (1.21)

where relev (q) represents the number of documents relevant to the query
q and rel (k) equals 1 if the kth document is relevant and 0 otherwise.

Definition 10 (Average Precision (AP))

The AP is a per topic measure, however, when we need to evaluate the perfor-
mance of a system for a set of topics from a collection, a per system measure should
be employed. Thus, the Mean Average Precision (MAP) stands for the mean of the
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average precision scores over queries. The MAP is a per system measure and its
equation is presented in Definition 11.

For a set of queries Q, the Mean Average Precision (MAP) is defined as
follows:

MAP = 1
|Q|

|Q|∑
q=1

AP (q) . (1.22)

Definition 11 (Mean Average Precision (MAP))

We have presented here 3 measures for IRS evaluation, but in trec_eval there
are 135 proposed measures. This fact raises the question of which or how many
measures to use in order to obtain a proper evaluation process. Moreover, having
this number of available measures, it would be interesting to find out whether these
measures are somehow correlated one with each other, or not. In [Baccini 2012]
the authors show that the measures can be clustered into highly correlated measure
groups. They use 130 measures out of the 135 measures proposed in trec_eval.
They also define a subset of weakly correlated performance measures by selecting a
representative from each cluster. Thus, this representative group of measures could
provide better insights regarding the system effectiveness. The authors used test
collections from TREC2 to TREC8, together with the evaluations for the official
participants at the corresponding TREC competitions. In the case of the most
homogeneous clusters, any measure is a good representative of the cluster from the
mathematical point of view. For the less homogeneous clusters, on the other hand,
Baccini et al. suggest to use the centroid and to consider both the distance to the
centroid and the popularity of the measure, in terms of usage. The authors mention
that the most homogeneous clusters (compact clusters) are clusters 1, 3, 4 and 5.
All the measure clusters are given in Table 1.3.

We notice that the cluster populations are not balanced and we underline that
the AP belongs to the 4th cluster 4, while the P@5, P@10 and P@30 are in the 1st
cluster. However, P@100 belongs to the 2nd cluster, therefore the P@k measures
and the AP are not relatively redundant and the redundancy of P@k measures
depends on k. Even though P@5, P@10 and P@30 belong to the same measure
cluster, we employ these three measures in our contribution which re-ranks retrieved
document lists based on query terms disambiguation (see Chapter 2). As a re-
ranking method, our interest stresses on the changes occurred in the top of the
document list. We aim to check how much improvement is obtained in the top
5 documents, this being also a realistic scenario when users check only the first
retrieved documents. On the other hand, we also would like to know what happens
further in terms of improvement, when the document limit reaches 30. All this
justifies the usage of both P@k and AP in our research without redundancy.
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Table 1.3: Performance measure clusters with their corresponding population, by [Baccini 2012]

Clusters
Cluster 1 (23 measures)
relative_unranked_avg_prec30 • relative_unranked_avg_prec20 • relative_prec30 •
map_at_R • relative_unranked_avg_prec15 • relative_prec20 • P30 • relative_prec15 •
int_0.20R.prec • relative_unranked_avg_prec10 • X0.20R.prec • ircl_prn.0.10 • P20 • P15
• relative_prec10 • bpref_10 • P10 • relative_unranked_avg_prec5 • relative_prec5 • P5 •
bpref_5 • recip_rank • ircl_prn.0.00
Cluster 2 (16 measures)
P100 • P200 • unranked_avg_prec500 • unranked_avg_prec1000 • bpref_num_ret • P500 •
bpref_num_all • P1000 • num_rel_ret • exact_unranked_avg_prec • num_rel • exact_prec
• bpref_num_correct • utility_1.0_.1.0_0.0_0.0 • exact_relative_unranked_avg_prec •
bpref_num_possible
Cluster 3 (12 measures)
bpref_top10Rnonrel • bpref_retnonrel • relative_unranked_avg_prec500 •
avg_relative_prec • recall500 • relative_prec500 • bpref_allnonrel • rela-
tive_unranked_avg_prec1000 • exact_recall • recall1000 • relative_prec1000 • ex-
act_relative_prec
Cluster 4 (45 measures)
X1.20R.prec • ircl_prn.0.30 • X1.40R.prec • int_map • X1.00R.prec • R.prec •
int_1.20R.prec • exact_int_R_rcl_prec • int_1.00R.prec infAP • avg_doc_prec •
map • X11.pt_avg • X1.60R.prec • int_0.80R.prec • int_1.40R.prec • X0.80R.prec •
old_bpref_top10pRnonrel • ircl_prn.0.40 • X1.80R.prec • int_1.60R.prec • X3.pt_avg
bpref • X2.00R.prec • bpref_top25p2Rnonrel • old_bpref • bpref_top10pRnonrel •
int_1.80R.prec • int_0.60R.prec • int_2.00R.prec • bpref_top25pRnonrel • X0.60R.prec •
bpref_top50pRnonrel • bpref_top5Rnonrel • ircl_prn.0.20 • ircl_prn.0.50 • int_0.40R.prec
• X0.40R.prec • int_map_at_R • ircl_prn.0.60 • unranked_avg_prec30 • ircl_prn.0.70 •
ircl_prn.0.80 • unranked_avg_prec200 • unranked_avg_prec100
Cluster 5 (18 measures)
bpref_topnonrel • fallout_recall_42 • fallout_recall_28 • fallout_recall_56 •
rcl_at_142_nonrel • fallout_recall_71 • fallout_recall_85 • relative_unranked_avg_prec100
• fallout_recall_99 • fallout_recall_113 • relative_prec100 • fallout_recall_127 • rela-
tive_unranked_avg_prec200 • fallout_recall_142 • recall100 • relative_prec200 • recall200
• bpref_retall
Cluster 6 (13 measures)
fallout_recall_14 • unranked_avg_prec20 • unranked_avg_prec15 • ircl_prn.0.90 • fall-
out_recall_0 • unranked_avg_prec10 • recall30 • ircl_prn.1.00 • recall20 • recall15 • un-
ranked_avg_prec5 • recall10 • recall5
Cluster 7 (3 measures)
rank_first_rel • num_nonrel_judged_ret • num_ret

We have seen that evaluation measures are employed in order to establish the
performance of an IRS. However, when one tries to improve performance, com-
pared with a baseline result, the relative improvement percentage or the average
improvement may be computed. This raises the question whether these improve-
ments are statistically significant, or not. Thus, statistical tests are required. In
the following section we present the correlation coefficient employed to check the
correlation between two variables and the statistical significance test employed to
check our experimental results, when compared to various baselines.
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1.4.2 Statistical measures

When evaluating a model, we compare our results in terms of an evaluation measure
(for example, AP or P@k) with baseline results. In order to check if the differences
between these two sets of results are statistically different, statistical tests are re-
quired.

Whenever wanting to verify if two variables are related to each other, one can
use a measure called correlation coefficient. For example, we propose in our con-
tributions query difficulty predictors (see Chapter 3), thus we need to check the
correlation between the predicted value and the true value of a difficulty measure,
in order to evaluate the prediction quality. Another example would be checking the
correlation between two lists of AP values.

We faced the choice between Pearson’s and Spearman’s correlation coefficients.
When the data is basically elliptically distributed and with no important outliers,
both of these coefficients yield similar results. However, the Spearman correlation is
less sensitive to strong outliers than the Pearson correlation [Hauke 2011]. This fact
is due to the outlier limitation to the value of its rank, in the case of Spearman’s
correlation. Our choice in terms of correlation coefficient is represented by the
Spearman’s coefficient, defined by Definition 12.

Given a sample of size n, the n raw scores Xi and Yi are converted to ranks
xi and yi and the Spearman correlation coefficient ρ is computed from:

ρ = 1 − 6
∑
d2

i

n (n2 − 1)
, (1.23)

where di = xi − yi and represents the rank difference.

Definition 12 (Spearman correlation coefficient)

The Student’s t-test can be used to establish whether two data sets are signifi-
cantly different from each other, or not. This test has two parameters: the number
of tails (1 or 2) and the type of test (paired and unpaired). The tails number regards
the direction of the difference between the two data sets, meaning which one was
predicted to be lower. In the case of the AP values per query, for the baseline and
for the results, respectively), we do not predict which group is lower, thus the choice
for a 2 tails test. A paired test is when the data sets represent multiple observations
(values of an effectiveness measure for two IR systems, in our case) from the same
individual (query, in our case). Thus, our choice is represented by the paired test.

The test statistics produced by t-test can be interpreted using the p-value. In a
statistic test the null hypothesis represents an "uninteresting" statement, such as "no
difference" between the two tested groups. In our case, the null hypothesis represents
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the statement that "the obtained results are not different from the baseline". The
opposite is the alternative hypothesis, that is the "interesting" statement that would
conclude an experiment, if the data allows it. The p-value is related to the null
hypothesis and represents the probability of obtaining the experimental results when
this null hypothesis is actually true. It is generally considered that results are
statistically significant, in a conventional way, if the p-value is less than 0.05 (a
threshold of 5%). In the case of two AP lists, a p-value less than 0.05 means that
there are less than 5% chance that the lists are not different.

For example, we propose query difficulty predictors in our contributions, thus
we need to check the correlation between the predicted value and the true value of
a difficulty measure, in order to evaluate the prediction quality.

We have presented so far the concepts of relevance, IR models, query expansions
techniques and the evaluation framework. In the following section we present the
test collection on which the evaluation measures are applied in order to obtain the
performance of our models.

1.4.3 Benchmark collections

For IR tasks there exist various benchmark collections for evaluation. The idea is
that the IR community has a common ground in order to compare the performance
of their methods, models or algorithms. One of the most important sets of test
collections, which is widely used by academics, comes from the TREC Conference.

The TREC ad hoc and web tasks allow researchers to investigate the perfor-
mance of systems that search a static set of documents using new information
needs (called topics). We opted for TREC Robust collection for use in the ad hoc
task and for WT10G and GOV2 in the case of web track. These collections are
very popular in the literature and having two types of benchmarks, ad hoc and web,
involves a wider evaluation perspective.

In the case of TREC Robust, the competition provided approximately 2 giga-
bytes worth of documents and a set of 250 natural language topic statements (per
collection). Subsets of these 250 topics represent two test collections known by the
name of TREC7, having 50 topics and TREC8, with 50 topics, respectively. The
documents were articles from newspapers like the Financial Times, the Federal Reg-
ister, the Foreign Broadcast Information Service and the LA Times. The WT10G
collection provided approximately 10 gigabytes worth of Web/Blog page documents
with its 100 corresponding topics. Finally, the GOV2 collection contains 25 million
documents crawled from .gov sites, with 150 topics. The total size of the GOV2
collection is of 426 gigabytes. In Table 1.4 we present a summary of benchmark
collections features regarding the topics, the documents, the disk space required for
each set of documents and the MAP value of the best participant system for each
campaign.
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Table 1.4: Topic and document features from the data collections

Collection No. of Topic number No. of Space Best MAP
topics documents on disk (participant)

TREC Robust 250 301-450; 601-700 528,155 2GB 0.3330
TREC7 50 351-400 528,155 2GB 0.3701
TREC8 50 401-450 528,155 2GB 0.3207
WT10G 100 451-550 1,692,096 10GB 0.2226
GOV2 150 701-850 25,205,179 426GB 0.2840

1.4.4 TREC topics and queries

TREC distinguishes between a statement of information need (the topic) and the
text that is actually processed by a retrieval system (the query). The TREC test
collections provide topics. What is now considered the "standard" format of a
TREC topic statement comprises a topic ID, a title, a description and a narrative.
The title contains two or three words that could correspond to key words a user
could have used as a query in a search engine. The description contains one or two
sentences that describe the topic area. The narrative part gives a concise description
of what makes a document relevant, or not relevant [Voorhees 1998]. Queries can
be constructed out of any combination between the three topic parts. However, the
trends in the IR community suggest the usage of the title part of the topic as query,
since it is the closest to a real world scenario, when the user types few words in a
search engine. Below, we present a sample query from the TREC collections.

Listing 1.1: TREC query sample

<top >

<num > Number: 301
<title > International Organized Crime

<desc > Description:
Identify organizations that participate in international criminal
activity , the activity , and , if possible , collaborating organizations
and the countries involved .

<narr > Narrative:
A relevant document must as a minimum identify the organization and
the type of illegal activity (e.g., Columbian cartel exporting
cocaine ).
Vague references to international drug trade without identification
of the organization (s) involved would not be relevant .

</top >

The relevance judgements for each collection are also given. The relevance
judgements files are called qrels and they contain on each line the query number,
a document name and the relevance level of that document for the query in cause,
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each field separated by space. For the collections mentioned in this section there
are binary relevance judgements, a document having the value 1 if it is relevant for
the query and the value 0, otherwise.

1.4.5 TREC runs and participants

We have presented the TREC framework, with the documents, queries and rele-
vance judgements. When an IRS runs retrieval over the benchmark documents, for
queries it retrieves ranked documents per query. TREC requires these results in a
specifically formatted file.

The results file has the format: query_id, iter, docno, rank, score, run_name
delimited by spaces. query_id represents the query number, for example 351 is the
first query of TREC7. The iteration constant iter is required. The document num-
bers docno are string values like FR940104-0-00001 and is to be found in collection
documents, between <DOCNO> tags. The score value score is a float value and
stands for the score obtained by the document from the field docno for the query
represented by query_id. The rank field rank is an integer starting from 0 and
it is used to rank the documents retrieved for a particular query. The last field
stands for the name of the run, run_name. The whole result file must be sorted
numerically by the field query_id. An example of several lines of a results file is
given in Listing 1.2.

Listing 1.2: TREC run sample

351 Q0 FT941 -9999 0 23.995955581970943 BB2c1 .0
351 Q0 FT934 -4848 1 23.020949953171677 BB2c1 .0
351 Q0 FT922 -15099 2 22.28826345449878 BB2c1 .0
...
352 Q0 FT923 -2780 727 6.909926252150617 BB2c1 .0
352 Q0 FT923 -1627 728 6.905332926462592 BB2c1 .0
352 Q0 FT931 -9306 729 6.905202601541681 BB2c1 .0
...
400 Q0 FR940804 -0 -00041 997 12.194091569964083 BB2c1 .0
400 Q0 LA080890 -0042 998 12.19372652596313 BB2c1 .0
400 Q0 LA081690 -0008 999 12.192530792085257 BB2c1 .0

For each TREC workshop, the organizers propose a set of test queries and the
campaign participants must provide their result files, also named runs, after retriev-
ing documents for those queries. All the files are evaluated and the participant runs
are ranked with respect to their MAP results. Past participant runs are accessible
through a payed subscription to TREC resources. We employ these kind of runs in
our experiments for baselines and also for uery difficulty prediction (see Section 3).
For instance, in TREC7 ad hoc track there have been 56 participants from 13 coun-
tries. This diversity of participants has ensured different IR approaches. The best
participant results, per collection, are mentioned in Table 1.4 from Section 1.4.4.
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1.4.6 IR platforms

By following the evaluation framework, we have used search engines with various
parameter set ups in order to produce lists of retrieved documents, or runs. Our
models also involve statistical, linguistic and classification tools. We present here
the search engines and the software tools employed for our experiments.

1.4.6.1 Terrier

Our first choice regarding search engines is Terrier. Terrier is an open source plat-
form that implements state-of-the-art indexing and retrieval models. Terrier is writ-
ten in Java and it was developed at the School of Computing Science, University of
Glasgow3 [Ounis 2006].

With Terrier, document collections can be indexed, using different indexing
strategies, such as single-pass or multi-pass and different stemming options. Re-
garding the retrieval part, Terrier offers several state-of-the art retrieval approaches
such as Divergence From Randomness, BM25F [Zaragoza 2004] and term depen-
dence proximity models. However, classical models, such as BM25 [Robertson 1994],
are also implemented. We have presented several of these models in Section 1.2.

A very important aspect is that Terrier can index and perform batch retrieval
over the TREC collections. Nevertheless, the possibility of customizing or imple-
menting new search models is given by the available plugin architecture.

The query expansion functionality is present in Terrier’s implementation. Dif-
ferent query expansion models, including Bo1, Bo2 and KL (all in [Amati 2004a])
are available. Besides that, several parameters are adjustable. For example, the
number of documents considered for expansion, or the number of terms to be added
to newly formed query, can be changed by the user.

Overall, Terrier represents a customizable and self contained retrieval environ-
ment, well adapted for our experimental needs.

1.4.6.2 Indri

The other search engine we used is Indri, an open source search engine that imple-
ments language model IR. Indri is a part of the Lemur Project and it is developed
by the University of Massachusetts together with the Carnegie Mellon University4.
Its API works with Java, C++, or PHP.

Indri is well suited for large text collections and, as Terrier, it can deal with
TREC collections. A mild downside is that TREC topics must be converted to a
certain XML-like format in order to be processed by Indri.

3http://www.terrier.org
4http://www.lemurproject.org/indri/

http://www.terrier.org
http://www.lemurproject.org/indri/
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For the basic retrieval, Indri provides the query likelihood model (QL) with
different parametrizable smoothing functions (such as Dirichlet smoothing), all in-
troduced in Section 1.2.4. The queries can be expanded using the blind relevance
feedback (RM1), or the Relevance Model 3 (RM3) [Lavrenko 2001], which represents
an interpolation between RM1 and the initial query, as described in Section 1.3.

1.5 Conclusion

In this chapter we have presented the concept of relevance, from its definition and
characteristics to the challenges raised by seeking relevant information.

Next, we detailed several IR models, with their principles and mathematical
formulation. Query expansion is one technique to improve IR performance and we
described several models from the literature.

We continued by explaining the IR evaluation process. We decomposed the no-
tion of evaluation into different aspects and we presented the existing evaluation
frameworks with their strong and weak points, respectively. Evaluation measures
are also presented together with statistical significance tests and correlation coef-
ficients, used in our studies and which quantify the significance of the obtained
results.

Finally, we described the benchmark collections involved in our experiments and
the IR platforms employed in our experimental framework throughout our work, in
order to obtain a clear overview of the implementation process.

Next, we present our contributions and we start in the following chapter with
our term disambiguation method which is used to re-rank retrieval results, in order
to improve the top precision.
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Word sense ambiguity has been identified as a cause of poor precision in IRS
[Schütze 1995]. Word Sense (WS) disambiguation and discrimination methods have
been defined to help systems choose which documents should be retrieved in relation
to an ambiguous query [Schütze 1995]. However, the only approaches that show a
genuine benefit for word sense discrimination or disambiguation in IR are gener-
ally supervised ones [Zhong 2012]. Still, the supervised disambiguation cannot be
used in practice on a large scale due to the absence of the necessary annotated cor-
pora. In this chapter we propose a new unsupervised method that uses word sense
discrimination in IR. The method we develop is based on unsupervised clustering
and reorders an initially retrieved document list by boosting documents that are
semantically similar to the target query. We consider two clustering techniques for
our method, in order to analyze the impact of the clustering technique on the final
results. The first clustering method is based on Naïve Bayes classification and the
other is based on spectral clustering, which represents a state-of-the-art method.
For several TREC ad hoc collections we show that our method is useful in the case
of queries which contain ambiguous terms. We are interested in improving the level
of precision after 5, 10 and 30 retrieved documents (P@5, P@10, P@30), since users
are naturally interested in finding relevant information in the top of the retrieved
list. We mention that the method with spectral clustering is more effective, since
it surpasses the baselines in most cases, while the Naïve Bayes based method yields
results beyond baseline only for queries with low performance. This motivates our
focus on poor performing queries, opening the lead for this type of queries to be-
come a central part in the following chapters of this thesis. Our method requires
context for queries. We simulate this context by using the description and narrative
part of TREC topics (see Section 2.4.1). However, in real applications, the context
is not available, therefore we also propose an automatically generated context for
queries. This research has been published in CEJCS1 [Chifu 2012], for the Naïve
Bayes method and in IPM2 [Chifu 2015], for the spectral clustering method with a
deeper analysis.

2.1 Introduction

According to Lin [Lin 1997], "given a word, its context and its possible meanings,
the problem of Word Sense (WS) disambiguation is to determine the meaning of the
word in that context"3. Although WS disambiguation is generally easy for humans,
it represents an issue for computers. The problem becomes even more difficult to
solve when an ambiguous word occurs in short chunks of texts, such as a query in

1Central European Journal of Computer Science
2Information Processing & Management
3For a complete discussion of state-of-the-art WS disambiguation see the monograph

[Agirre 2006].
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an IRS.
Applying WS disambiguation to improve IR results is a well studied prob-

lem, but with controversial results as evidenced in the literature. Several au-
thors have concluded that WS disambiguation in IR does not lead to significant
retrieval performance improvement [Sanderson 1994], [Guyot 2008]. Various studies
[Krovetz 1992], [Voorhees 1993], [Uzuner 1999] have argued that the main problem
in improving retrieval performance when using WS disambiguation is the ineffi-
ciency of the existing disambiguation algorithms, a problem which increases in the
case of short queries.

In more recent years the issue remained "as to whether less than 90% accurate
automated WS disambiguation can lead to improvements in retrieval effectiveness"
[Stokoe 2003]. This remark refers primarily to the traditional task of WS disam-
biguation which identifies the meaning of the ambiguous words in context. This
type of WS disambiguation is generally based on external sources, such as dic-
tionaries or WordNet (WN)-like knowledge bases for labeling senses [Guyot 2008],
[Carpineto 2012] and is therefore knowledge-based.

Attempts to use knowledge-based WS disambiguation in IR have been numerous.
In [Gonzalo 1998] as well as in [Mihalcea 2000] positive results were reported. These
studies made use of semantic indexing based on WN synsets. However, they were
all conducted on small data sets. As commented in [Ng 2011], the evaluation is
scaled up to a large test collection in [Stokoe 2003] but the reported improvements
are from a weak baseline. Positive results are also reported in [Kim 2004], although
the quantum of improvements is small.

Zhi Zhong and Hwee Tou Ng [Zhong 2012] are among the few authors who
more recently have expressed a growing belief in the benefits brought by WS dis-
ambiguation to IR - when using a supervised WS disambiguation technique, based
on annotated parallel corpora. However, the annotated or parallel corpora are not
available in a real context, making unsupervised methods unpractical.

In contrast to all these authors, we are suggesting and investigating the usage
of an unsupervised WS disambiguation technique. In this chapter, we present an
approach that aims at identifying clusters from similar contexts, where each cluster
shows a polysemous word being used for a particular meaning. In this manner, this
type of analysis is more suited for the application in IR. Our approach is therefore
not concerned with performing a straightforward WS disambiguation, but rather
with differentiating among the meanings of an ambiguous word. Considering WS
discrimination rather than straightforward WS disambiguation avoids the use of
external sources such as dictionaries or WN type synsets which are commonly used
[Carpineto 2012].

We hereby propose a new WS discrimination method for IR based on Naïve
Bayes and spectral clustering. Firstly, from the wide range of unsupervised learning
techniques that could be applied to our problem, we have chosen to use a parametric
model to assign a sense group to an ambiguous occurrence of a so-called target
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word. In each case we shall assign the most probable group given the context as
defined by the Naïve Bayes model, where the parameter estimates are formulated
via unsupervised techniques. We employ WN-based feature selection, which has
provided good disambiguation results in the case of all parts of speech [Hristea 2008],
[Hristea 2009a].

On the other hand, there is the spectral clustering. This state-of-the-art clus-
tering technique is now a hot topic; for example, in [Bellugi 2015] is presented a
spectral clustering search algorithm for predicting shallow landslide size and loca-
tion, in [Wang 2014] the authors recently discussed about the constrained spectral
clustering and its applications, while Borjigin and Guo [Borjigin 2012] studied the
cluster number determination in spectral clustering. Spectral clustering has been
used in WS discrimination for the first time by Popescu and Hristea [Popescu 2011]
who point out the importance of the clustering method used in unsupervised WS dis-
ambiguation. This importance would also be reflected in the IR application results.
For instance, in the case of the Naïve Bayes model, in spite of performing WN-based
feature selection, we were not able to overcome the baseline when considering all
queries, and therefore we only targeted the subset with lowest precision. On the
other hand, when using spectral clustering, which has its own feature weighting,
the same baseline is, in most cases, surpassed.

The WS discrimination-based re-ranking method is summarized in Algorithm 2.1.

Algorithm 2.1 Re-ranking method based on unsupervised WS discrimination
Input: TREC topics, document collection

1: Consider the title part of a TREC topic as a query
2: Identify the part of speech for each query term
3: Check each query term if it is ambiguous4

4: Select the queries that contain at least one ambiguous term.
5: Retrieve the set of documents for each ambiguous query.
6: Add context to queries (descriptive and narrative topic parts).
7: Add contextualized queries from step 6 to the retrieved document sets.
8: Obtain document clusters (# clusters = # WN synsets), by performing WS

discrimination for each query and for each ambiguous term, with one of the
methods:

• Naïve Bayes classification
• Spectral clustering

9: For each ambiguous query term, select the document cluster where the query
itself was assigned.

10: If there are more than one ambiguous terms per query, combine the document
clusters selected at step 9 for each individual term.

11: Re-rank initial retrieved document lists by giving more importance to docu-
ments that are in the query cluster.

Output : Re-ranked document lists for each query

4A term is ambiguous if it has more than one synsets in WN, for its part of speech (step 2).
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Our re-ranking method based on unsupervised WS discrimination requires con-
text for queries. We simulate this context by employing the text from the descrip-
tion and the narrative parts of TREC topics (see Section 2.4.1). However, in real
applications, the queries are short (2 or 3 words) and the context is not available,
therefore we also propose here a method to automatically generate context for short
queries, based on pseudo-relevance feedback. The re-ranking method is tested with
this automatically generated query context.

The present chapter is organized as follows: in Section 2.2 we present the related
works on WS disambiguation in IR; the focus is on unsupervised methods. Section
2.3 presents word sense discrimination based on Naïve Bayes classification and spec-
tral clustering. Section 2.4 presents the two step IR process using the proposed WS
discrimination model. The first step is performing the query WS discrimination
and the second step re-ranks the retrieved documents according to the query WS
discrimination results. The evaluation is presented in Section 2.5. A more thorough
analysis of the obtained results with spectral clustering is performed in Section 2.7,
by analyzing the improvements by precision intervals and by the number of ambigu-
ous terms in queries, respectively. The disambiguation context is represented by
the description and narrative parts of a TREC topic (see Section 1.4.4 for details).
In Section 2.8 we introduce an automatically generated context and we study its
lays out the on the results of our spectral clustering-based method. Section 2.9
concludes this chapter.

2.2 Related work

WS ambiguity is a central concern in natural language processing (NLP). SEN-
SEVAL defined the first evaluation framework for WS disambiguation in NLP
[Kilgarriff 1997]. According to Kilgarriff and Rosenzweig [Kilgarriff 2000], SEN-
SEVAL participants defined systems that can be classified into two categories:
supervised systems, which use training instances of sense-tagged words and non-
supervised systems. According to [Navigli 2009], supervised systems are typically
employed when a restricted number of words have to be disambiguated, while this
type of system encounters more difficulties when all open-class words from a text
have to be disambiguated. In addition to general WS disambiguation, many recent
papers consider disambiguation of person names [Artiles 2007], [Piskorski 2009],
[D’Angelo 2011] and disambiguation of place names [Leidner 2007]. Indeed, WS
disambiguation has many applications, such as text processing, machine transla-
tion and IR, for which this type of disambiguation – proper names – can be useful
(although not sufficient).

Multiple approaches from the literature, including ours, are using external lin-
guistic resources such as WN. WN [Miller 1995] is a large lexical database of En-
glish. We mention that the project is developped for other languages through the
Global WordNet Associaton. This computational linguistics and natural language
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processing tool was started by George Miller, at the Princeton University. Nouns,
verbs, adjectives and adverbs are grouped into sets of cognitive synonyms called
synsets, each expressing a distinct concept. Synsets are interlinked by means of
conceptual-semantic and lexical relations5. The English version of the software is
available freely for research and for commercial usage and one can use the stand
alone application, the online application, or the API in order to integrate WN fea-
tures in newly developed software. WN resembles a thesaurus, since it groups words
together based on their meanings. However, there are some differences, such as la-
beled semantic relations between words and the semantic disambiguation for words
in proximity, in the case of WN. The majority of the WN’s relations connect words
from the same part of speech (POS). Thus, WN really consists of four sub-nets: for
nouns, for verbs, for adjectives and for adverbs, with few cross-POS pointers.

Krovetz and Croft [Krovetz 1992] were among the first to conduct a thorough
analysis of ambiguity in IR. They used the CACM and TIME test collections and
compared query word sense with word senses in retrieved documents. They found
that sense mismatch occurs more often when the document is non-relevant to the
query and when there are few common words bridging the query and the retrieved
document. Another large scale study of word sense disambiguation in IR was con-
ducted by Voorhees [Voorhees 1993]. The automatic indexing process she developed
used the "is-a" relations from WN and constructed vectors of senses to represent
documents and queries. This approach was compared to a stem-based approach for
5 small collections (CACM, CISI, CRAN, MED, TIME). The results showed that
the stem-based approach was superior overall, although the sense-based approach
improved the results for some queries [Voorhees 1993]. Sanderson [Sanderson 1994]
used the Reuters collection in his experiments and showed that disambiguation ac-
curacy should be of at least 90% in order for it to be of practical use. He used
pseudo-words in his experiments.

Schütze introduced word sense discrimination in IR [Schütze 1995], [Schütze 1998].
Schütze considers that, in some cases, WS disambiguation can be defined as a two-
stage process: first sense discrimination, then sense labeling. Sense discrimination
aims at classifying the occurrences of a word into categories that share the same
word sense. This type of approach is quite distinct from the traditional task of
WS disambiguation, which, as already mentioned, classifies words relative to ex-
isting senses. Schütze and Pedersen [Schütze 1995] created a lexical co-occurrence
based thesaurus. They associated each ambiguous term with a word vector where
coordinates correspond to co-occurring term frequencies. Words with the same
meaning were assumed to have similar vectors. Word vectors were clustered to-
gether to determine the word uses. Similarity was based on the cosine measure.
The application in IR consisted of modifying the standard word-based vector-space
model. The words from the "bag of words" text representation were replaced by word
senses. Evaluation of TREC 1 showed that average precision is improved when using
sense-based retrieval rather than word-based retrieval. Combining word and sense-

5http://wordnet.princeton.edu/

http://wordnet.princeton.edu/
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based retrieval improves precision as well. They were the first to demonstrate that
disambiguation, even if imperfect, can indeed improve text retrieval performance
[Schütze 1995].

Schütze’s [Schütze 1998] context group discrimination uses a form of average link
clustering known as McQuitty’s Similarity Analysis. Schütze adapts LSI/LSA so
that it represents entire contexts rather than single word types using second-order
co-occurrences of lexical features. The created clusters are made up of contexts
that represent a similar or related sense. In [Schütze 1998] it is again shown that
unlabeled clusters of occurrences of a word representing the same sense result in
improved IR. The tests are conducted over the TREC-1, Category B collection and
the reported results are up to 14.4% improvement in terms of AP. We reimplement
this method and we use it as comparison with our results.

Unlike that described in [Schütze 1995] and [Schütze 1998], the method we pro-
pose here is based on re-ranking and not on modifying document representation.
Re-indexing the entire corpus when new queries are submitted, due to changes in
documents, would represents an important time and resource consuming event.

The approaches that show benefit for are generally supervised ones. Zhi Zhong
and Hwee Tou Ng [Zhong 2012] constructed their supervised WS disambiguation
system directly from parallel corpora. Experimental results on standard TREC
collections show that, using the word senses tagged by this supervised WSD sys-
tem, significant improvements over a state-of-the-art IR system can be obtained
[Zhong 2012].

To overcome the fact that supervised methods are unpractical, we propose here
an efficient unsupervised method for WS discrimination in IR.

This method consists in proposing the application of two different clustering
techniques to implement our method. Our aim is not only to stress on the benefits
of unsupervised WS discrimination in IR, but also to point out the importance of
the clustering technique involved in this task. While in the case of the Naïve Bayes
model, in spite of performing WN-based feature selection, we were not able to move
beyond the baseline when considering all queries, and therefore only targeted the
lowest precision ones, we hereby show that, when using spectral clustering (that
performs its own feature weighting) the same baseline is, in most cases, surpassed.

Analysis of the results provided by the proposed method, with both clustering
techniques, will be carried out (see Section 2.6) against the other major approach
existing in the literature [Schütze 1995]. The obtained results will be shown as
promising in sustaining the concept of sense discrimination being beneficial for IR
applications, especially when used from a re-ranking perspective.
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2.3 Clustering-based WS discrimination

WS discrimination can be considered as a clustering problem since a way to solve
it is to group the contexts of an ambiguous word into a number of groups and
to discriminate between these groups without labeling them. However, clustering
linguistic data is a difficult task due to its highly complex structure. Recently, a
variety of clustering algorithms have been proposed in order to deal with situations
where the data is complex, not linearly separable and where the clusters are non-
convex. We present here our choice in terms of clustering method, that is Naïve
Bayes classification and spectral clustering.

When using a Bayesian classifier in the context of WS discrimination, the algo-
rithm looks at the words around an ambiguous word within the so-called context
window. Each content word contributes with useful information concerning which
sense of the ambiguous word is more likely to be used with it. The feature in this
context are all content words occurring in the context window of the target word.
The classifier does no feature selection, instead it combines the evidence coming from
all features [Manning 1999]. This fact generates a so-called "bag of words model",
based on the Naïve Bayes assumption that all these content words are conditionally
independent. The assumption is clearly not true in the case of natural language,
but has provided very good practical disambiguation results. As commented in
[Manning 1999], there is a surprisingly large number of cases in which the Naïve
Bayes assumption does well, "partly because the decisions made can still be optimal
even if the probability estimates are inaccurate due to feature dependence".

Still in the context of not linearly separable data and non-convex clusters, two
related families of methods, kernel and spectral methods, have proven to be very
effective in solving different tasks.

In computational linguistics, spectral clustering has been used for machine trans-
lation [Gangadharaiah 2006], [Zhao 2005], name disambiguation for author citation
identification [Han 2005], and in unsupervised WSD [Popescu 2011].

Spectral clustering has been used in WSD for the first time by Popescu and Hris-
tea [Popescu 2011] who pointed out the importance of the clustering method used
in unsupervised WSD. Spectral clustering has been shown [Popescu 2011] as strong
enough to make up for the lack of external knowledge of all types, solving many
problems on its own, including that of feature selection for WSD. Disambiguation
results, after using an unsupervised algorithm based on spectral clustering (that
uses its own feature weighting) were superior to those obtained using a classical
unsupervised algorithm (with an underlying Naïve Bayes model, for which feature
selection was performed) for all parts of speech [Popescu 2011].

The disambiguation accuracy obtained when using clustering in unsupervised
WSD, relative to all parts of speech, encouraged us to adopt these two clustering
techniques for WS discrimination in the context of IR.
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2.3.1 Unsupervised WS discrimination with an underlying Naïve
Bayes model

The algorithm for WSD that is used here exemplifies an important theoretical ap-
proach in statistical language processing: Bayesian classification [Gale 1992].

In order to formalize the Bayesian model in the context of WSD, we shall follow
[Hristea 2008] and we shall present the probability structure of the corpus C. The
following notations will be used: w is the word to be disambiguated (target word);
s1, ..., sK are possible senses for w; the c1, ..., cI are contexts of w in a corpus C, as
described in Section 2.3.1.1; and the v1, ..., vJ are words used as contextual features
for the disambiguation of w.

2.3.1.1 The probability model of the corpus, the Bayes classifier and
parameter estimation

Let us note that the contextual features could be some attributes (morphological,
syntactical, etc.), or they could be actual "neighboring" content words of the target
word. The contextual features occur in a fixed position near w, in a window of
fixed length, centered or not on w. In what follows, a window of size n will denote
taking into consideration n content words to the left and n content words to the
right of the target word, whenever possible. The total number of words taken into
consideration for disambiguation will therefore be 2n+1. When not enough features
are available, the entire sentence in which the target word occurs will represent the
window of context.

The probability structure of the corpus is based the assumption that the contexts
{ci, i = 1, ..., I} in the corpus C are independent. Hence, the likelihood of C is given
by the product defined in (2.1):

P (C) =
I∏

i=1
P (ci) (2.1)

This assumption is quite natural, as the contexts are not connected because
they occur at significant distance one from another in C.

Considering the possible senses of each context, one gets

P (C) =
I∏

i=1

K∑
k=1

P (sk) · P (ci | sk) (2.2)

A model with independent features (usually known as the Naïve Bayes model)
assumes that the contextual features are conditionally independent. That is:
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P (ci | sk) =
∏

vj in ci

P (vj | sk) =
J∏

j=1
(P (vj | sk))|vj in ci| , (2.3)

where |vj in ci| denote the number of occurrences of feature vj in context ci.
The likelihood of the corpus C is then

P (C) =
I∏

i=1

K∑
k=1

P (sk)
J∏

j=1
(P (vj | sk))|vj in ci| (2.4)

The parameters of the probability model with independent features are:

{P (sk) , k = 1, ...,K and P (vj | sk) , j = 1, ..., J, k = 1, ...,K} ,

where

- P (sk) = αk, k = 1, ...,K, αk ≥ 0 for all k,
∑K

k=1 αk = 1;

- P (vj | sk) = θkj , k = 1, ...,K, j = 1, ..., J, θkj ≥ 0 for all k and j,
∑J

j=1 θkj = 1
for all k = 1, ...,K.

With this notation, the likelihood of the corpus C can be written as:

P (C) =
I∏

i=1

K∑
k=1

αk

J∏
j=1

(θkj)|vj in ci| . (2.5)

The well known Bayes classifier involves a posteriori probabilities of the senses,
calculated by the Bayes formula for a specified context c,

P (sk | c) = P (sk) · P (c | sk)
K∑

k=1
P (sk) · P (c | sk)

= P (sk) · P (c | sk)
P (c)

, (2.6)

with the denominator independent of senses.
The Bayes classifier chooses the sense s′ for which the a posteriori probability

is maximal (sometimes called the Maximum A Posteriori classifier)

s′ = arg max
k=1,...,K

P (sk | c) (2.7)

Taking into account the previous Bayes formula, one can define the Bayes clas-
sifier by the equivalent formula

s′ = arg max
k=1,...,K

(logP (sk) + logP (c | sk)) (2.8)
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Of course, when implementing a Bayes classifier, one has to estimate the param-
eters first.

Parameter estimation is performed by the Maximum Likelihood Method, for the
available corpus C. That is, one has to solve the optimization problem

max (logP (C) | {P (sk) , k = 1, ...,K and P (vj | sk) , j = 1, ..., J, k = 1, ...,K}) .

For the Naïve Bayes model, the problem can be written as

max

 I∑
i=1

log

 K∑
k=1

αk

J∏
j=1

(θkj)|vj in ci|

 (2.9)

with the constraints:

K∑
k=1

αk = 1

J∑
j=1

θkj = 1 for all k = 1, ...,K

For unsupervised disambiguation, where no annotated training corpus is avail-
able, the maximum likelihood estimates of the parameters are usually constructed
by means of the Expectation - Maximization (EM) algorithm [Dempster 1977]. The
EM algorithm is known as a very successful iterative method, very well fitted for
models with missing data (which, in our case, are the senses of the ambiguous
words). It has been used by us as well for parameter estimation, closely following
[Hristea 2009b].

If, for simplicity, we denote the vector of parameters6 by

ψ = (α1, ..., αK , θ11, ..., θKJ) (2.10)

then it is well known that the EM iterations
(
ψ(r)

)
r

converge to the Maximum
Likelihood Estimate

ψ̂ =
(
α̂1, ..., α̂K , θ̂11, ..., θ̂KJ

)
. (2.11)

Once the parameters of the model have been estimated7, we can disambiguate
contexts of w by computing the probability of each of the senses based on features
vj occurring in the context c. Making the Naïve Bayes assumption and using the
Bayes decision rule, we can decide s′ if

6Let us notice that the number of independent components (parameters) is (K − 1) +
(KJ − K) = KJ − 1.

7For a detailed presentation of the involved computation, see [Hristea 2009b].
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s′ = arg max
k=1,...,K

log α̂k +
J∑

j=1
|vj in c| · log θ̂kj

 (2.12)

When the Naïve Bayes model is applied to supervised disambiguation, the ac-
tual words occurring in the context window are usually used as features. This type
of framework generates a great number of features and, implicitly, a great number
of parameters. As noted in [Hristea 2008], this can dramatically decrease the model
performance since the available data is usually insufficient for the estimation of the
great number of resulting parameters. A situation that becomes even more drastic
in the case of unsupervised disambiguation, where parameters must be estimated in
the presence of missing data (the sense labels). In order to overcome this problem,
the various existing unsupervised approaches to WSD implicitly or explicitly per-
form a feature selection. Of the possible ways of performing feature selection the
present study implements WN-based feature selection as described in [Hristea 2008].
This approach to WSD places the disambiguation process at the border between un-
supervised and knowledge-based techniques. It is based on a set of features formed
by the actual words occurring near the target word (within the context window)
and reduces the size of this feature set by performing knowledge-based feature se-
lection that relies entirely on WN. The WN semantic network provides the words
considered relevant for the set of senses taken into consideration corresponding to
the target word. In our experiments, presented in Section 2.6, WordNet 3.0 has
been used.

First of all, words occurring in the same WN synsets as the target word (WN
synonyms) have been chosen, corresponding to all senses of the target. Additionally,
the words occurring in synsets related (through explicit relations provided in WN) to
those containing the target word have also been considered as part of the vocabulary
used for disambiguation. Synsets and relations were restricted to those associated
with the part of speech of the target word [Hristea 2008]. The content words of the
glosses of all types of synsets participating in the disambiguation process, using the
corresponding example strings as well, have equally been taken into consideration.
The latter choice has been made since previous studies [Banerjee 2003], performed
for knowledge-based disambiguation, have come to the conclusion that the "example
relation" (which simply returns the example string associated with the input synset)
seems to provide useful information in the case of all parts of speech. The authors
tested their method over SENSEVAL-2 words and reported absolute improvements
up to 16.3%.

In the following section we present the other unsupervised clustering technique
chosen for our proposed method, which is spectral clustering.
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2.3.2 Spectral clustering

Besides the Naïve Bayes method, we employ spectral clustering as classification
technique in order to show the decisive importance of the clustering method choice
reflected in top precision results. Indeed, in Section 2.6 we show that the spectral
clustering-based method performs best. The method of spectral clustering is briefly
presented here. For more details and justification of the method the reader is
referred to [von Luxburg 2007] and [Hastie 2008].

2.3.2.1 Spectral clustering method

Given a set of observations x1, ..., xn and some notion of similarity sij ≥ 0 between
all pairs of observations xi and xj , the intuitive goal of clustering is to divide the ob-
servations into several groups such that observations in the same group are similar
and observations in different groups are dissimilar to each other. One possible way
to represent the pairwise similarities between observations is via an undirected sim-
ilarity graph G = (V,E). The vertices of the graph represent the observations (the
vertex vi represents the observation xi). Two vertices are connected if the similarity
sij between the corresponding observations xi and xj is positive (or exceeds some
threshold). The edges are weighted by the sij values. The problem of clustering
can then be reformulated as a graph-partition problem, where we identify connected
components with clusters. Our intention is to find a partition of the graph such
that the edges between different groups have very low weights (which means that
observations in different clusters are dissimilar to each other) and the edges within
a group have high weights (which means that observations within the same cluster
are similar to each other).

An important element in spectral clustering is to construct similarity graphs that
reflect the local neighborhood relationships between observations. Starting from a
similarity matrix, there are many ways to define a similarity graph that reflects
local behavior: ε-neighborhood graph, k-nearest neighbor graphs, fully connected
graph [von Luxburg 2007] and [Maier 2009]. One of the most popular graphs and
the one that we will use for unsupervised WSD, is the mutual k-nearest-neighbor
graph. The vertex vi is connected to the vertex vj if, according to the similarity
matrix sij , the observation xi is among the k-nearest neighbors of the observation
xj or the observation xj is among the k-nearest neighbors of the observation xi.
The weight of the edge vivj will be wij = sij in this case.

In order to formally present the method of spectral clustering we introduce the
following notations.

Let G = (V,E) be an undirected graph with vertex set V = v1, ..., vn. In the
following we assume that the graph G is weighted, that each edge between two
vertices vi and vj carries a non-negative weight wij ≥ 0. The weighted adjacency
matrix of the graph is the matrix W = (wij)i,j=1,...,n. wij = 0 means that the
vertices vi and vj are not connected by an edge. As G is undirected, we require
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that wij = wji. The degree of a vertex vi ∈ V is defined as di =
n∑

j=1
wij . The degree

matrix D will be the diagonal matrix with the degrees d1, ..., dn on the diagonal.
Given a subset of vertices A ⊆ V , we denote its complement V \A by A and its

cardinal by |A|. For two not necessarily disjoint sets A,B ⊆ V we define

W (A,B) =
∑

vi∈A,vj∈B

wij . (2.13)

We can now formulate the graph-partition problem in relation to spectral clus-
tering. For a given number k of subsets (clusters) there is a partition of V A1, ..., Ak

which minimizes8:

RatioCut(A1, ..., Ak) = 1
2

k∑
i=1

W (Ai, Ai)
|Ai|

(2.14)

Unfortunately, the above optimization problem is NP hard [von Luxburg 2007].
Spectral clustering solves a relaxed version of this problem. Relaxing "RatioCut"
leads to unnormalized spectral clustering.

The unnormalized graph Laplacian matrix of a similarity graph G is defined as:

L = D −W (2.15)

Spectral clustering finds the m eigenvectors Un×m that correspond to the m

smallest eigenvalues of L (ignoring the trivial constant eigenvector corresponding
to the eigenvalue 0). Using a standard method like K-means, the rows of U are
clustered, giving a clustering of the original observations.

The unnormalized spectral clustering algorithm is summarized in Algorithm 2.2.

2.3.2.2 Using spectral clustering for unsupervised WS discrimination

There are a number of issues that must be dealt with when applying spectral clus-
tering in practice. One must choose how to compute the similarity between obser-
vations and how to transform these similarities into a similarity graph. In the case
of the mutual k-nearest-neighbor graph, the parameter k, representing the number
of nearest neighbors, must be set. In the light of all these issues we follow the
approach adopted by [Popescu 2011] where spectral clustering was used in WSD
for the first time.

In unsupervised WS disambiguation, the observations are represented by con-
texts of the ambiguous word. The contextual features are given by the actual

8The "RatioCut" is not the only objective function optimized in spectral clustering. See
[von Luxburg 2007] for other variants such as "Ncut".



2.4. WS discrimination in IR 51

Algorithm 2.2 Unnormalized spectral clustering algorithm
Input: Similarity matrix S ∈ Rn×n, number k of clusters to construct.

1: Construct a similarity graph in one of the standard ways, for example by using
the mutual k-nearest-neighbor graph. Let W be its weighted adjacency matrix.

2: Compute the unnormalized Laplacian L.
3: Compute the first k− 1 eigenvectors u1, ..., uk−1 of L corresponding to the k− 1

smallest eigenvalues of L (ignoring the trivial constant eigenvector correspond-
ing to the eigenvalue 0).

4: Let U ∈ Rn×(k−1) be the matrix containing the vectors u1, ..., uk−1 as columns.

5: For i = 1, ..., n, let yi ∈ Rk−1 be the vector corresponding to the i-th row of U .
6: Cluster the points (yi)i=1,...,n in Rk−1 with the k-means algorithm into clusters
C1, ..., Ck.

Output : Clusters A1, ..., Ak with Ai = {j | yj ∈ Ci}.

"neighboring" content words of the target (ambiguous) word. They occur in a fixed
position near the target, in a window of fixed length, centered or not centered on
the target. A window of size n denotes the consideration of n content words to
the left and n content words to the right of the target, whenever possible. The
total number of words considered for disambiguation is therefore 2n+ 1. When not
enough features are available, the entire sentence in which the target word occurs
represents the context window. The classical window size, generally used in WS
disambiguation, and also in our case, is 25 (n = 25). Within this representation,
the value of a feature is given by the number of occurrences of the corresponding
word in the given context window. Thus, a context is represented as a feature vector
and the similarity between two contexts is given by the value of the dot product
of the corresponding feature vectors. The dot product was chosen as the measure
of similarity between feature vectors because of the success of the linear kernel in
supervised WS disambiguation [Màrquez 2006].

As a method for building the similarity graph from the similarity matrix we
use the mutual k-nearest-neighbor graph method. This involves the choice of the
parameter k, the number of neighbors. As in [Popescu 2011], we use a value of 30
for the number of neighbors9.

2.4 WS discrimination in IR

The main contribution of this chapter is the proposal of a new unsupervised clustering-
based method for performing word sense discrimination for IR. This method aims
to increase the top level precision for queries which contain ambiguous words. Our
suggested approach reorders an initially retrieved document list by pushing to the

9See [Popescu 2011] for a justification concerning the choice of this number of neighbors.
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fore documents that are semantically similar to the target query.
To start with, for each query we retrieve a set of documents by means of a state-

of-the-art search engine; documents are ordered according to their scores. Our
objective is then to pinpoint the documents which are more relevant to the infor-
mation need because they share the term sense with the query; and to enable these
documents to improve their position at the top of the document list.

The first phase in the method is based on clustering the retrieved document set
with respect to the senses of each ambiguous word and to decide which documents
share the query term sense. In this phase a classification technique is employed.
First, we try the Naïve Bayes classification and then the spectral clustering. This
means that we have the same WS discrimination algorithm with two variants, one
for each corresponding clustering technique. In the second phase, we reorder the
initially retrieved document list by boosting documents belonging to the selected
cluster.

2.4.1 Query WS discrimination

Before we can apply the WS discrimination technique described in Section 2.3.2.2
to the queries, we need to process the data within a preprocessing step. The pre-
processing step identifies the polysemous words of a query (as a result of their
occurrence in multiple WN synsets).

Term discrimination uses a subset of documents. More precisely, for each query,
we consider the first n documents retrieved by the IR system. For each document
we thus know the score which indicates how similar that document is to a specific
query. The query is added to this set of retrieved documents as if it was another
document. The feature set for each document is then calculated by creating an
incidence matrix with rows representing the documents and columns representing
the features. Each element of this matrix is either 1 or 0, depending whether or not
the feature indicated by the column index is present in the document indicated by
the row index. The number of WN senses and the incidence matrix obtained after
data preprocessing is used as input for the WS discrimination algorithm. Thus, the
WS discrimination process is performed on n + 1 documents (n initially retrieved
documents and the query itself).

Let us now describe in more details the entire WS discrimination process in
relation to a single polysemous target word.

The first step is to build the corresponding feature set. The first processing step
is to eliminate the stopwords. The remaining words are stemmed using the Porter
stemmer algorithm [Porter 1980]. The stem corresponding to the target word is not
retained, while the remaining stems, alphabetically ordered, represent the final set
of features that are used in the WS discrimination process.

The second step is to build the incidence matrix that indicates what features
occur in each document. We determine the position of the target word within



2.4. WS discrimination in IR 53

each of the documents. In our experiments we used a context window of size 25,
as suggested in [Hristea 2008] in order to obtain the best possible disambiguation
accuracy. The features that occur in the context window are stored in the row
of the matrix that corresponds to the analyzed document. If a certain document
contains the target several times, we only consider its first occurrence. This is
done in accordance with the "one-sense-per-discourse" heuristic [Gale 1992] which
is largely used in WS disambiguation and which states the tendency of a word to
preserve its meaning across all its occurrences in a given discourse.

For each query and for each ambiguous term occurring in that query, we cluster
the retrieved documents into a number of clusters equal to the number of senses
the ambiguous term has, according to a lexical database (WN), which will be used
as sense inventory. The final task of the WS discrimination process for a given
polysemous word is to determine the document clusters relative to that word. At
this moment the resulting clusters depend on the applied clustering technique, Naïve
Bayes or spectral clustering, respectively. Each obtained cluster corresponds to a
specific sense of the polysemous target word, with one of the clusters containing
the query itself. Note that two documents are similar (and thus belong to the same
cluster), from the WS discrimination point of view, if the polysemous word has
the same sense in both documents. Therefore, disambiguating a polysemous term
results in retaining only those documents occurring in the same cluster as the query.

A query can contain several ambiguous terms. In this case, as many clusters
of documents as the number of ambiguous words in the query are retained. In
order to form a unique list of documents, we fuse these sets of documents; we
consider the initial values obtained by the search engine to be the document scores.
Various fusion functions that can be used for this purpose have been defined in the
literature [Shaw 1995]. In order to obtain a unique cluster per query, we apply the
fusion function CombMNZ [Shaw 1995].

The CombMNZ function computes the final document scores as follows:

Si
f = ci

ci∑
j=0

(Si
j) , (2.16)

where Si
f represents the final score for each document di, Si

j represents the score
of the document di from the cluster j (if the document di does not exist in one
particular cluster j, then Si

j = 0), and ci represents the number of nonzero scores
for each document i (ci = k if the document di occurs in k clusters).

We have also tested, for scores fusion, the CombSum function [Shaw 1995],
which has the formula:

Si
f =

ci∑
j=0

(Si
j) . (2.17)
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One can notice that this function, unlike CombMNZ, does not boost the final
score when multiplying the scores sum by the number of occurrences in all the
clusters. Thus, the results obtained using CombSum are weaker than in the case of
CombMNZ, as we will present later on in Section 2.6.1.1.

We should point out that our method performs WS discrimination and therefore
does not give the actual word sense (since we do not know which cluster refers to a
specific sense). However, it is not necessary to pair clusters with senses, as document
clusters are sufficient for explicit automatic disambiguation in IR.

2.4.2 Document re-ranking

Our approach aims to improve the top retrieved document list. The first phase in
the discussed method leads to a set of documents extracted by the search engine,
corresponding to each query, and in the clusters of documents obtained as described
in Section 2.4.1. Our main purpose for using a WS discrimination technique in IR
is to find the most probable relevant documents and to assign them a higher rank in
the initial document list. The second phase of the method thus corresponds to a re-
ranking method [Meister 2011]. We mention that we have also tested our method
as a filtering method, keeping only the clusters of documents obtained through
the query WS discrimination. We have obtained results that do not overcome the
baselines (see Section 2.6.1.1) and we believe this fact is due to the possible loss of
relevant documents through filtering.

Thus, in our approach, the way to improve the top retrieved document list is
to modify the order of the retrieved documents by pushing those documents to the
fore that are semantically similar to the query, as defined by the WS discrimination
results. To do this, we merge the initial set of documents with those obtained as a
result of clustering. Unlike the fusion step in the case of multiple ambiguous terms
per query (see Section 2.4.1), which aims at obtaining one document set per query
by fusing the document lists for each ambiguous query term, we merge here the
initial set of retrieved documents with the clustering document list, per on a per
query basis. According to the method discussed here, the documents obtained by
the search engine and the set of documents obtained after clustering have different
levels of importance in the final results. We therefore use a parameter to assign a
weight to the fusion function.

This function has the following structure:

Si
f = Si

1 + αSi
2 with:

Si
1 = score(di)

Si
2 =

{
score(di), if di exists in Clust

0, otherwise

(2.18)

where Si
f represents the final score of a document di, score(di) represents the score
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of that document di when considered in the initially retrieved document set, Clust
is the document cluster containing the query itself and α ∈ [0, 1] represents the
weight of the clustering method for the final results.

As reported in the evaluation section (Section 2.5), we started with α = 0 and
then increased this parameter by 0.01 at each trial.

Finally, in Section 2.7, the method is used on subgroups of queries with the
purpose of analyzing its behavior with regard to different types of queries. The
criterion for creating these subgroups of queries is their performance after being
sent to the search engine.

2.5 Evaluation framework

2.5.1 Data collection features

To evaluate the two versions of the described method we have used data collections
from the TREC competition. We opted for three collections for use in the ad hoc
task: TREC7, TREC8 and WT10G. For TREC7 and TREC8, the competition
provided approximately 2 gigabytes worth of documents and a set of 50 natural
language topic statements (per collection).

The TREC test collections provide topics. What is now considered the "stan-
dard" format of a TREC topic statement comprises a topic ID, a title, a description
and a narrative. The title contains two or three words that represent the key words
a user could have used to send a query to a search engine. Both the descriptive and
the narrative parts can offer clues about the word senses used in the title part.

For more details about TREC data sets, see Section 1.4.3.

2.5.2 Ambiguous queries and ambiguous terms

In our approach, we search for ambiguous terms in the title part of the TREC topic.
The ambiguous terms were detected using the WN knowledge database. If the term
occurred in multiple WN synsets, then it was considered as an ambiguous term.
A query is defined as ambiguous if it contains at least one ambiguous term. The
queries from the three collections contained from zero to four ambiguous words, as
presented in Table 2.1, with most of them being nouns.

2.5.3 Evaluation measures

As detailed in Section 1.4.1, TREC ad hoc tasks are evaluated using the trec_eval
package. This package provides various performance measures, including some
single valued summary measures that are derived from the two basic measures in
IR: recall and precision. The precision is the fraction of the retrieved documents
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Table 2.1: The number of ambiguous queries for the data collections

Collection
Number of queries with

X ambiguous terms Total number of
ambiguous queriesX=0 X=1 X=2 X=3 X=4

TREC7 15 22 10 3 0 35
TREC8 13 22 6 9 0 37
WT10G 18 15 11 5 1 32

that are relevant, while the recall represents the fraction of the documents relevant
to the query that are successfully retrieved. The average precision is defined as:

AP (q) =
∑R

r=1 [p (r) rel (r)]
relev (q)

(2.19)

where relev (q) represents the number of documents relevant to the query q, R
is the number of retrieved documents, r is the rank, p (r) is the precision of the
top r retrieved documents and rel (r) equals 1 if the rth document is relevant
and 0 otherwise. The MAP (Mean Average Precision) stands for the mean of the
average precision scores for each query. The trec_eval package also implements
the precision at certain cut-off levels. A cut-off level is a rank that defines the
retrieved set. For example, a cut-off level of ten defines the retrieved set as the top
ten documents in the ranked list (P@10).

This study uses three cut-off levels: P@5, P@10 and P@30, which are high
precision measures. It is worth mentioning that, since we re-ordered an initial
retrieved document list, we were unable to retrieve documents that would not have
initially been retrieved (no recall improvement). We therefore target high precision
improvements.

2.5.4 Baselines

The present study is based on runs constructed by Terrier (see Section 1.4.6). The
sets of documents retrieved by Terrier are the first 1,000 ranked documents re-
turned by the search engine. We tried several configurations of the Terrier param-
eters. For each collection, we chose as our baselines the settings with the highest
MAP. The MAP values for our baselines are consistent with the literature [He 2005],
[Zhong 2012]. Runs (associated with the baselines), which determine the set of doc-
uments to be used by our WS discrimination method, were constructed as additional
baselines.

The best configuration for TREC7 was the following: a two step indexation
(both direct and inverted index), with active indexation by block and the use of
the BB2 (parameter c = 1) as a weighting model. BB2 is a DFR model (see
Section 1.2.3), implemented in Terrier. As a query expansion model our choice was
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the parameter-free KL model (KLbfree). The configuration required 3 documents
to be used for the query expansion. A term has to occur in two documents in order
to be considered relevant. Finally, the number of terms to be added to the query
for the process of query expansion was set at 10. The queries use all the three
topic parts (title, descriptive and narrative). However, for TREC8 and WT10G,
the parameter configuration with the best results in terms of MAP stays in place,
except for two differences: the weighting model which is changed with the DFRee
model (no parameters) and the narrative part of the topic which is not taken into
account when the query is constructed.

The values of the MAP corresponding to the best initial results for the data
collections we use are presented in Table 2.6, in addition to some collection features,
such as the number of topics and the number of documents.

Table 2.2: Topic and document features from the data collections

Collection No. of topics Topic number No. of documents Baseline MAP
TREC7 50 351-400 528 155 0.2851
TREC8 50 401-451 528 155 0.2577
WT10G 50 451-500 1 692 096 0.1733

2.5.5 WS discrimination settings

For each query, the set of the top 1,000 documents retrieved by the best settings for
Terrier was considered. These 1,000 documents are the documents considered as the
most similar to the information need, sorted by their obtained score, in descending
order. The method we promote aims at filtering and reordering those documents
before retrieving them for the user.

The target terms for the described WS discrimination process are taken from
the title part of the TREC topic only. However, our approach needs to have a
context for the term. Since topic titles are generally too short, in order to form the
context window for the ambiguous terms in the title, all three parts of the topic
were used (title, narrative and descriptive). The stopwords from the resulting text
were removed (Terrier’s stopwords list is used).

2.6 Results

2.6.1 Results using Naïve Bayes classification

We have tested our method both as a filtering technique and as a re-ranking one,
over the TREC7 and TREC8 collections. We discuss here the choices we have
made and the obtained results. We compare our performances with the considered
baseline and we show that the method only as filtering technique is not effective,
thus re-ranking would be required in order to improve IR performance.
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2.6.1.1 The filtering method for all the ambiguous queries

Our WS discrimination analysis has shown that the queries (topic title) taken into
account for our study may contain from zero up to three ambiguous words, for
TREC7 and TREC8 (see Table 2.1). In the case of the TREC7 data, the analysis
results for the considered topics show 15 queries with no polysemous words, 22
queries with only one polysemous word, 10 queries with two polysemous words and
3 queries with three polysemous words. Corresponding to the TREC8 data, the
analysis results identify 13 queries with no polysemous words, 22 queries with only
one polysemous word, 6 queries with two polysemous words and 9 queries with
three polysemous words.

The average number of senses for the polysemous words of the 35 TREC7 am-
biguous queries is 3.47 and the average number of features is 128.5. There are
three adjectives (human, commercial, organic), two verbs (teaching, dismantling),
and forty-six nouns (see Table 2.3). In the case of the TREC8 data, the average
number of senses is 4.03 and the average number of features is 138.07. There are
four adjectives, five verbs and fifty-one nouns. In the preprocessing stage we did not
identify any adverbs, both corresponding to the TREC7 and to the TREC8 data,
this fact being consistent with other studies in natural language processing finding
that adverbs, in general, are less ambiguous and more rare in natural language than
other parts of speech. The English nouns, however, have a high degree of polysemy;
even two proper names that are polysemous have been detected in both collections:
"El Nino" and "Amazon" in TREC7 and "Cuba" and "Triangle" (from the Golden
Triangle) in TREC8, respectively.

Table 2.3: Number of part-of-speech elements from the ambiguous queries, for TREC7 and
TREC8

Collection Number of
adjectives verbs nouns

TREC7 3 2 46
TREC8 4 5 45

We have considered as scores for the list of documents forming the clusters the
initial scores obtained by Terrier.

Only one list of retrieved documents per query must be proposed, however, in
the case of multiple ambiguous terms from the same query, we obtain a list per
ambiguous term. Thus, a score fusion is required in order to fuse all the lists for
each ambiguous query term coming from the same query. Regarding the fusion
function in the case of several ambiguous words, we have evaluated CombSum and
CombMNZ [Shaw 1995], presented in Section 2.4.1.

We have constructed TREC runs for our filtering method using both fusion
functions. We present the obtained results for the TREC7 data in Table 2.10. The
same results corresponding to the TREC8 data are presented in Table 2.5.

The CombMNZ function behaves constantly better than the CombSum function,
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Table 2.4: Baseline, CombSum and ComMNZ results for all the ambiguous queries (TREC7)

Precision Baseline CombSum CombMNZ
P@5 0.6343 0.5257 0.5429
P@10 0.5600 0.4629 0.4914
P@30 0.4095 0.3571 0.3714

Table 2.5: Baseline, CombSum and ComMNZ results for all the ambiguous queries (TREC8)

Precision Baseline CombSum CombMNZ
P@5 0.4960 0.4171 0.4686
P@10 0.4660 0.3514 0.3829
P@30 0.3707 0.2476 0.2752

but the baseline is not even reached (both in the case of the TREC7 data and in
that of the TREC8 data) because of the possible loss of relevant documents after
filtering. Therefore, we evaluate our method as a re-ranking method.

2.6.1.2 The re-ranking method

All the ambiguous queries

The re-ranking method is based on an additional fusion step: the initial set of
documents, retrieved by Terrier, is fused with the list of documents obtained by
clustering (see Section 2.4.2). We test the most favorable contribution of the two
sets of documents to the final results by parameterizing the fusion function, as
presented in Equation 2.18.

To evaluate our choices we have constructed the corresponding TREC runs,
and we have determined the overall precisions for each alpha parameter value in
the weighted sum Si

f = Si
1 + αSi

2 (see Equation 2.18).
Figures 2.1 and 2.2 show that the higher the alpha parameter value is, the lower

is the performance. There are some improvements for alpha between 0.1 and 0.2,
but the difference between the results and the baseline is usually less than 0.01.
This conclusion holds for both the TREC7 and the TREC8 test data. In Figure
2.1 we can notice that the obtained results do not even surpass the baseline in the
case of P@5. The best improvements are obtained for the P@30, for a low value
of alpha, between 0.05 and 0.13. On the other hand, for P@30 of TREC8 (Figure
2.2), the results are only slightly above the baseline, for a low alpha, in order to
descend below the baseline with the growth of alpha. For the P@5, however, on
the same collection, there are some improvements for a low alpha (0.01, 0.06), in
contrast with P@5 results for TREC7.
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Figure 2.1: Precision after the first 5, 10 and 30 retrieved documents, compared to the baseline,
for the parametrized method, over TREC7
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Figure 2.2: Precision after the first 5, 10 and 30 retrieved documents, compared to the baseline,
for the parametrized method, over TREC8
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Table 2.6: Baseline and best results for the lowest precision queries, over TREC7 (∗ marks
statistically significant results, p-value < 0.05)

Precision Baseline Best results
P@5 0.2000 0.2222∗

P@10 0.1667 0.1778∗

P@30 0.1370 0.1481∗

Table 2.7: Baseline and best results for the lowest precision queries, over TREC8 (∗ marks
statistically significant results, p-value < 0.05)

Precision Baseline Best results
P@5 0.0364 0.1455∗

P@10 0.1091 0.1545∗

P@30 0.1545 0.1636∗

Lowest precision queries

Rather than evaluating the result on all the ambiguous queries, we consider poorly
performing topics only. Previous work have shown that clustering topics according
to their difficulty in terms of precision provides interesting insight [Bigot 2011].

With respect to quartiles, we have considered the TREC7 35 ambiguous queries
and the TREC8 35 ambiguous queries, respectively and have grouped them by
their overall precision for the top 5 documents obtained with Terrier. The first
quartile, the one with the lowest precision, contains 9 queries (TREC7) and 11
queries (TREC8), respectively.

We present the corresponding results of the parametrized fusion function in
Figures 2.3 and 2.4. The P@5 and P@10 results for the first quartile, on TREC8
(Figure 2.4), are constantly above the baseline. Baseline is also constantly surpassed
on TREC7 (Figure 2.3), but for P@10 results.

The best results were obtained with the alpha parameter having values between
0.1 and 0.2 in the case of both datasets (Figures 2.3 and 2.4). Since alpha is the
parameter assigning a weight to the clustering method for the final results, one
can notice that it is best for the cluster documents to participate with 1/5 of their
scores in the final document score. Regarding the TREC8 results (Figure 2.4) we can
notice, at P@5, a significant improvement of precision, compared to the baseline,
for all the values of alpha greater than 0.03. In this case, the highest difference
between our results and the baseline is 0.1091.

The baseline precisions and the best results obtained for the lowest precision
queries are shown in Table 2.6 (TREC7) and in Table 2.7 (TREC8), respectively.

2.6.2 Results using spectral clustering

In this section we present the results of our method while employing the spectral
clustering technique. The test collections are TREC7, TREC8 and WT10G. These
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Figure 2.3: Precision after the first 5, 10 and 30 retrieved documents, obtained for the lowest
precision queries, compared to the baseline, for the parametrized method, over TREC8
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Figure 2.4: Precision after the first 5, 10 and 30 retrieved documents, obtained for the lowest
precision queries, compared to the baseline, for the parametrized method, over TREC8
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results as compared to the baselines (see Section 2.5.4) are presented in Figure 2.5.
The graphs illustrate the manner in which the top levels of precision evolve with
respect to the alpha parameter. Alpha is the same parameter that gives a greater
or smaller level of importance, in the final score, to the scores of the documents
in the cluster, as presented in Section 2.4.2 (Equation 2.18). On the first row, the
results for P@5 are shown, in comparison with the three collections. The next two
rows present the results for P@10 and P@30 respectively. For each cut-off level, the
vertical axis is recalibrated in order to obtain a clearer view.

Figure 2.5 shows that the best results were obtained when the value of the
alpha parameter was between 0.02 and 0.20. This observation holds for all the top
levels of precision (P@5, P@10 and P@30) and for all the three collections involved
in the study. p-values smaller than 10−4 of t-tests have confirmed the statistical
significance of our results. t-tests have used the two following populations: the
baseline value and our results per alpha, respectively. It is also noticeable that
for an alpha parameter which is greater than 0.2, the results usually fall below the
baselines. Since alpha is the parameter that assigns the importance of the clustering
method for the final scores, one can notice that it is best for the cluster documents
to participate with not more than 1/5 in the final document score. The alpha
parameter is similar to the lambda interpolation parameter in the case of RM3 (see
Section 1.3, Equation 1.17), since the optimal lambda values for the short queries
vary between 0.01 and 0.4 [Zhai 2004].

The baselines were surpassed by the obtained results for each collection and for
each top level of precision. While for P@5 and P@10 the difference between the
results and the baselines is clear, for P@30 the curve representing the results remains
closer to the baseline. The best improvement occurred for the WT10G collection
in the case of P@10. A precision value of 0.2937 was obtained (the baseline was
0.2688), which represents an improvement of 8.48%, and is statistically significant
with a p-value <10−6 (t-test).

Baselines, so far, consisted of initial runs that we try to improve by re-ranking
based on WS discrimination (see Section 2.5.4). More than that, analysis of the
results has been carried out against the major approach existing in the literature.
We compare our results with those obtained when implementing the disambiguation
method proposed in [Schütze 1995], as well as with the results we obtained while
using our Naïve Bayes classification-based method for the unsupervised clustering
step.

In the case of the terms co-occurrence-based method [Schütze 1995], which
is described in Section 2.2, we have reimplemented this method and have orga-
nized the same testing setup as the one originally used by Schütze and Pedersen
[Schütze 1995]. The stop words have been removed (Terrier stop-words list) and
the target term-centered context window was set to size 40 (20 terms before the
target term, 20 terms after the target term). We have identified 1, 466, 983 unique
terms that induced the 1, 466, 983 × 1, 466, 983 sparse term co-occurrence matrix.
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Figure 2.5: The results for the three test collections by the top levels of precision

We mention that, due to the high number of vocabulary terms, the co-occurrence
matrix is difficult to handle from a computational point of view. The SVD for the
co-occurrence matrix was set to 100 dimensions and the reduced matrix was com-
puted using the irlba package of R10 (with 100 iterations). To classify the context
vectors we used the Buckshot algorithm implemented using R (packages hc and
kmeans of R), with 10% sampling for the initial hierarchical clustering step. The
query terms that occurred less than 100 times in the corpus were not considered
ambiguous since, according to its authors [Schütze 1995], the method uses f/50 as
the number of senses, with f denoting the occurrence number of the target term
in the corpus. Creating context vectors for each target word occurrence, as well
as reindexing after replacing words with their senses (for each set of queries), also
represent time and resource consuming operations.

In Table 2.8 we present the results of our comparison in terms of high preci-
sion. Best Run represents the best run obtained with Terrier, treated as baseline
(see Section 2.5.4) and also treated as the word-based retrieval for the terms co-
occurrence-based method. Naïve Bayes represents our method with the Naïve Bayes

10http://www.r-project.org/
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classifier, described in Section 2.3.1. Spectral Clustering is our method, described
in Section 2.3.2. Sense-based represents the terms co-occurrence-based method of
[Schütze 1995] and CombRank represents the modified co-occurrence method, also
presented in [Schütze 1995], which considers the sum of ranks from the word-based
retrieval and from the sense-based retrieval as the final rank for a retrieved docu-
ment. It was reported [Schütze 1995] as better than using the sense-based method
alone. CMNZ-WB-SB represents the combined document list resulting from the
word-based and sense-based retrievals, using the CombMNZ function [Shaw 1995].
CMNZ-WB-SB-alpha represents the CMNZ-WB-SB results with the sense-based re-
trieved list weighted by an alpha parameter. We tested various alpha values. The
best turned out to be 0.1.

Table 2.8: Comparison with the co-occurrence-based methods and with the Naïve Bayes-based
method, by the top precisions, for the TREC7 collection (** represents p-value <10−6), compared
to Best Run

Prec.
Best Naïve Bayes Spectral Clustering Schütze & Pedersen

Run Peak Res. Average Res. Peak Res. Average Res. Sense-based CombRank CMNZ- CMNZ-
WB-SB WB-SB-0.1

P@5 0.6343 0.6286 0.5736 0.6514∗∗ 0.6193 0.3829 0.4400 0.4286 0.4914
P@10 0.5600 0.5629 0.5152 0.5657∗∗ 0.5409 0.3400 0.3686 0.3743 0.4257
P@30 0.4095 0.4171∗∗ 0.3999 0.4248∗∗ 0.4068 0.2438 0.2629 0.2752 0.3210

The various combinations help to improve the initial performance of Sense-based
results, although the baseline results (Best Run) are not surpassed. The number of
the improved queries with respect to Best Run was also computed for the CMNZ-
0.1 (which is the best alpha for co-occurrence-based results) and for the Spectral
Clustering results, with the same alpha value of 0.1. The results are presented in
Table 2.9. Only very few queries are improved by the terms co-occurrence-based
method.

As opposed to the Sense-based model, the peak results of Spectral Clustering
outperform the Best Run baseline, for all the levels of high precision (from 1.01% to
3.73%). The average results do not overcome the baseline due to the performance
decrease after a certain value of alpha (see Figure2.5).

The Naïve Bayes peak results outperform the Best Run only for P@10 and
P@30 (0.51% and 1.85%, respectively). In addition, our method outperforms the
Naïve Bayes method both on average and on peak results. The average is computed
across all alpha parameter values, considering all the ambiguous queries. This again
suggests the importance of the clustering technique used in unsupervised WSD for
IR. We hereby conclude that spectral clustering is an appropriate clustering method
for the purpose of sense discrimination in IR.

The present method was also tested for 5,000 document runs, but the results
were not improved. We think the reason is that, once more documents per run
are taken into account, a significant amount of noise is also introduced and the
re-ranking method cannot reach efficiency at the top level of precision (P@5, P@10
and P@30). We also considered a two cluster model in which documents could
either be clustered in the query cluster if similar enough to the query, or in the
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Table 2.9: The number of improved queries, by the top precisions, for CMNZ-WB-SB-0.1
(Schütze) and Spectral Clustering-0.1

Prec. Number of improved queries
CMNZ-WB-SB-0.1 (Schütze) Spectral Clustering-0.1

P@5 3 18
P@10 3 19
P@30 5 17

non-query cluster. Results were better when as many clusters as WN senses were
considered.

2.7 Further analysis of the spectral clustering results

This section aims to deepen the analysis of the spectral clustering results obtained
when considering two types of query clusters: those based on the query performance
and those taking into account the number of ambiguous terms per query.

2.7.1 Improvements in baseline precision intervals

Following previous research showing that results can differ according to query dif-
ficulty [Bigot 2011] and with the purpose of observing where the proposed method
behaves most accurately, (independently for each collection), all the results from
all the three test collections were gathered into a single data set. All the runs cor-
responding to the 104 ambiguous queries were divided into 5 groups, according to
the baseline precision (0.0 – 0.2, 0.2 – 0.4, . . . , 0.8 – 1.0) and for each of the top
levels of precision being investigated (P@5, P@10 and P@30, respectively).

The P@5 results for all the intervals are depicted in Figure 2.6. For the queries
with low or very low performance (intervals 0.0 – 0.2 and 0.2 – 0.4) we obtained sig-
nificant improvements. This fact suggests that the reordering of the poorly perform-
ing list of documents retrieved by the search engine puts more relevant documents
at the top of the list. On the other hand, for the queries with a good or very good
performance (0.6 – 0.8 and 0.8 – 1.0), our re-ranking method could not bring more
relevant documents to the fore because the search engine results were either already
as good as possible (0.8 for the interval 0.6 – 0.8, or 1.0 for the interval 0.8 – 1.0),
or very close to this. The results can hence overcome the baseline only by chance.
All the comparisons are statistically significant, with the p-values <10−6 (t-test for
columns Baseline vs. Peak Result and Baseline vs. Average Result, respectively).
The conclusions for P@5 are also consistent with P@10. The good results for P@10
can be explained by the fact that there is a higher chance of obtaining new relevant
documents in a list of 10 documents than in a list of 5. However, for P@30, the
improvements were not as significant as for the other top levels of precision. In
order to improve the performance in a list of 30 retrieved documents it would be
necessary to bring more than 1 or 2 new relevant documents from the re-ranking
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Figure 2.6: P@5 by the intervals of performance corresponding to the TREC7, TREC8 and
WT10G collections

process. (For P@5, 1 new relevant document represents a 20% improvement, while
for P@30, 1 new relevant document represents only a 3.33% improvement).

In Table 2.10 we present the peak (the best results) and average improvements
for each baseline precision interval in the case of P@5 and P@10 respectively.

2.7.2 Detailed results after taking into account the number of am-
biguous terms

The queries from the data set utilized in this study contain from 0 to 4 ambiguous
terms (see Table 2.1). A high number of ambiguous terms also suggests an increased
level of query difficulty caused by multiple possible combinations of senses between
terms. Keeping this aspect in mind, we investigated the behavior of our spectral
clustering method over clusters of queries classified by the number of ambiguous
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Table 2.10: The peak and average improvements for each baseline precision interval (∗∗ represents
p-value <10−4)

Precision Interval Baseline Peak Result Peak Average Average
(Spectral) Improvement Result Improvement

P@5 0.0 – 0.2 0.0742 0.1085 46.15%∗∗ 0.0942 26.95%∗∗

P@5 0.2 – 0.4 0.4000 0.4750 18.75%∗∗ 0.4477 11.92%∗∗

P@5 0.4 – 0.6 0.6000 0.6125 2.08%∗∗ 0.5851 -2.48%∗∗

P@5 0.6 – 0.8 0.8000 0.8105 1.31% 0.7433 -7.08%∗∗

P@5 0.8 – 1.0 1.0000 1.0000 0.00% 0.9360 -6.40%∗∗

P@10 0.0 – 0.2 0.0696 0.1121 60.87%∗∗ 0.1048 50.57%∗∗

P@10 0.2 – 0.4 0.3560 0.3920 10.11%∗∗ 0.3731 4.80%∗∗

P@10 0.4 – 0.6 0.5312 0.5437 2.35%∗∗ 0.4916 -7.45%∗∗

P@10 0.6 – 0.8 0.7533 0.7600 0.88% 0.6546 -13.10%∗∗

P@10 0.8 – 1.0 0.9533 0.9533 0.00% 0.9227 -3.20%∗∗

terms. We proceeded as in Section 2.7.1 (independently for each collection) by
grouping all three data sets into a single one. All of the 104 ambiguous queries were
divided into three classes: queries that contain 1 ambiguous term, 2 ambiguous
terms and 3 ambiguous terms respectively. Our method was not applied to the
queries that contained no ambiguous terms (see Section 2.5.2). The population for
the cluster corresponding to queries with 4 ambiguous terms was very weak (only
one query) and therefore was also not taken into account.

The peak spectral clustering results (with optimal alpha) and the percentages
of improvements for each cluster, by the top levels of precision, are presented in
Table 2.11.

Table 2.11: The peak improvements, by the number of ambiguous terms, for each top precision
(∗∗ represents p-value < 10−4)

Precision 1 Ambiguous Term
Baseline Peak Res. Peak Improv.

P@5 0.5767 0.5936 2.93%∗∗

P@10 0.5238 0.5404 3.17%∗∗

P@30 0.3911 0.4001 2.31%∗∗

Precision 2 Ambiguous Terms
Baseline Peak Res. Peak Improv.

P@5 0.4000 0.4148 3.70%∗∗

P@10 0.3307 0.3445 4.17%∗∗

P@30 0.2323 0.2434 4.78%∗∗

Precision 3 Ambiguous Terms
Baseline Peak Res. Peak Improv.

P@5 0.3882 0.4118 6.06%∗∗

P@10 0.3176 0.3353 5.57%∗∗

P@30 0.2727 0.2941 7.91%∗∗

The highest values were obtained for the clusters of queries containing 3 am-
biguous terms, which suggests that our method best improves the most ambiguous
queries. For P@30 the improvement was almost 8%. The results are statistically
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significant with p-values <10−6 (t-test for columns Baseline vs. Peak Res.). It is
also worth mentioning that constant improvements were also obtained for the other
two clusters being investigated.

2.8 The spectral clustering method using automatically
generated context

The method we propose uses all the three parts of the TREC topics, title, description
and narrative (TDN), as disambiguation context. TDN implies the assumption that
a context exists for the query, which is not the case in real world applications. For
this reason, in this section we automatically build a context in order to validate
our approach. This automatic context is not optimal (weaker performance than for
TDN) and it is not optimized since our point was only to validate that our method
still works with automatic context. We present the automatic contextualization
method and we discuss the obtained results.

2.8.1 Automatic contextualization using pseudo relevance feedback

We chose a straightforward pseudo relevance feedback (PRF) approach in order to
obtain the context [Attar 1977, Buckley 1994]. The option for this type of contex-
tualization is motivated by the assumption that the first retrieved documents have
high chances to be relevant and thus they presumably contain the target words with
the correct sense.

First of all, we run retrieval on the initial query (title part of the TREC topic)
over the TREC document collections and we retain the first three retrieved doc-
uments, as it was done in the baseline (see Section 2.5.4). This parameter value
is used in query expansion models [He 2009] based on the assumption that, when
taking into account more than five documents, the probability of treating irrelevant
documents increases. Having these top documents, we concatenate the texts, we
remove the stopwords and we search for the presence of at least two query terms
in a moving context window of 50 words. If this presence occurs, we keep the text
in the context window and add it to our context. The search for at least two query
terms together is motivated by the assumption that two ambiguous words tend
to disambiguate each other when found together, for example "java" and "island"
[Andrews 2011].

External sources such as Wikipedia were avoided when building the context
due to differences in terms of actuality. Moreover, the relevance judgments were
constructed considering the information in the description and narrative parts of
the topic, suggesting some kind of a closed circuit. For instance, supposing that
we have obtained a context with senses for target words different than the senses
suggested for pooling, this would lead the evaluation of the disambiguation process
to complete failure.
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The usage of our PRF-based context and insights regarding the performance
are presented in the following subsection.

2.8.2 Experiments and results

In order to prove the effectiveness of our method in the case of automatically gen-
erated context we created four TREC runs, as follows:

• Title: retrieved documents when the query represents only the title part of
the topic;

• Title+Context: retrieved documents when the query represents the title
part of the topic, together with the automatically built context;

• Spectral-Title: the re-ranked documents after applying the spectral clus-
tering method, when the query is represented only by the title part of the
topic;

• Spectral-Title+Context: the re-ranked documents after using the auto-
matic context as WSD context for the spectral clustering method.

For few queries in each collection, our method was not able to provide any
context either due to a title part of the TREC topic formed only by one term, or due
to the complete nonexistence of co-occurrences of at least two terms in the context
window, in the retained text. Hence, we considered only the queries containing
ambiguous terms and for which the automatic method was able to provide a context,
as follows: 29 out of 35 ambiguous queries in TREC7, 35 out of 35 ambiguous queries
in TREC8 and 28 out of 32 ambiguous queries in WT10G, respectively.

Tables 2.12, 2.13 and 2.14 provide precision values at 5, 10 and 30 retrieved
documents after evaluating the above mentioned runs, for each collection. For
comparison we recall the results obtained using the reformulated TD(N) runs (from
Section 2.5). We mention that the queries without automatic context were also
removed from the TD(N) evaluations, in order to maintain the same comparison
basis. The best values per collection are written in bold. Statistical significance
of results (t-test between the basic Title run and Spectral-Title+Context) is also
marked with asterisks in the tables (p-value <10−6).

Table 2.12: TREC7, P@k for the considered runs

Precision TD(N) Spectral-TD(N) Title Title+
Context Spectral-Title Spectral-Title+

Context
P@5 0.6429 0.6571 0.5310 0.5448 0.5379 0.5655(6.5%)∗∗

P@10 0.5679 0.5714 0.4586 0.4103 0.4586 0.4724(3.0%)∗∗

P@30 0.4226 0.4381 0.3425 0.2770 0.3402 0.3460(1.0%)∗∗
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Table 2.13: TREC8, P@k for the considered runs

Precision TD(N) Spectral-TD(N) Title Title+
Context Spectral-Title Spectral-Title+

Context
P@5 0.5081 0.5243 0.5371 0.3829 0.5486 0.5543(3.2%)∗∗

P@10 0.4622 0.4730 0.4800 0.2543 0.5114 0.5029(4.8%)∗∗

P@30 0.3811 0.3829 0.3848 0.1524 0.3886 0.4019(4.4%)∗∗

Table 2.14: WT10G, P@k for the considered runs

Precision TD(N) Spectral-TD(N) Title Title+
Context Spectral-Title Spectral-Title+

Context
P@5 0.3538 0.3692 0.3500 0.2071 0.3357 0.3571(2.0%)∗∗

P@10 0.2885 0.3115 0.2714 0.1357 0.2679 0.2786(2.7%)∗∗

P@30 0.1923 0.1949 0.1917 0.0679 0.1857 0.1929(0.6%)∗∗

In terms of top level precision, the Spectral-Title+context run is better than the
Title run, which is better than the Title+Context run. This suggests that the gener-
ated context is harmful for the retrieval process itself but beneficial for the spectral
clustering method (Spectral-Title+Context run is generally better than Spectral-
Title). We believe that this is due to the amount of "noisy" terms in the context.
Unlike the feature selection process using a Naïve Bayes technique [Chifu 2012],
spectral clustering automatically selects its useful features, hence "noise" filters out
and it remains less of a problem than for the retrieval process.

We notice that in 89% of cases the Spectral-Title+Context run has the greatest
performance. Even if the relative improvement (0.6% - 6.5%) is not very high,
this improvement allows us to state that our method remains effective even with
automatic contextualization. In addition, the results we obtained in Section 2.6
show that using a better context would improve the results even more.

The least improved results are to be noticed in the case of WT10G (Table 2.14).
Here the initial retrieval (Title only) has the lowest performance among all three
considered collections, therefore the context quality decreases, since the P@3 is
relatively low (TREC7: 0.5977, TREC8: 0.5619, WT10G: 0.3810). Having a poor
context implies a less performing WSD process.

2.9 Conclusion

In this chapter we presented a re-ranking method for IR, based on WS discrimi-
nation. In order to discriminate the term senses, the WS discrimination requires
unsupervised clustering, for which we have chosen Naïve Bayes classification and
spectral clustering. Our method shows a remarkable improvement in high rank
precision for ambiguous queries. We believe that this represents a very important
aspect, considering the fact that IR systems are predisposed to failure in the case
of this particular type of queries [Stokoe 2003], [Mothe 2007].

Several previous studies [Sanderson 1994], [Guyot 2008] have failed to prove
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the usefulness of WS disambiguation in IR. On the contrary, we show that unsu-
pervised WS disambiguation, namely WS discrimination, can improve IR results.
We are of the opinion that WS discrimination is sufficient in IR and that WS dis-
ambiguation is not compulsory, as opposed to text translation, for example. We
analyze the obtained results with respect to a major approach existing in the liter-
ature [Schütze 1995], as detailed in Section 2.5. When using a Naïve Bayes-based
clustering technique, we demonstrated that WS discrimination can improve IR per-
formance. However, unlike for the case of spectral clustering, we only recorded
very small improvement and only on some sub-cases, hence the importance of the
clustering technique used for WS discrimination in IR, another point which we have
made here.

Our method exploits TREC topic definitions which have a level of detail in their
description, a level which is not normally available in an IRS; the topic definition
is used to provide a context to the query. Other works from the literature use
these structural elements and most often the descriptive part of the query helps
in improving the results [He 2004]. However, using the complete statement of the
topic could lead to valid criticism of experiments such as ours because we exploit
this detail. We prove that, if this level of detail is available, then it can be used
in a beneficial way to improve retrieval effectiveness. However, even if our goal
was not to develop mechanisms which can capture in an optimal way the needed
level of detail, we do propose a method to capture the context of the query and
show that our own method for WS discrimination in IR remains useful. Such a
method of contextualization, namely the usage of PRF [Buckley 1994], has been
employed by us in Section 2.8 for validating our conclusions in the presence of
automatically generated context. Indeed, contextualizing short texts, such as tweet
contextualization [SanJuan 2011] and query expansion [Ogilvie 2009] is an active
research domain and we think it will be worth considering new contextualization
techniques in our WS discrimination method as a future goal.

The research conducted for the results in this chapter opens the lead to include
in our study query difficulty prediction, which is already an active research area
[Mothe 2005], [Pehcevski 2010], [Carmel 2010], [Sarnikar 2014] yet having a lack in
terms of applications, unfortunately. The fact that our method rather improves
poor performing queries (Section 2.7.1), especially those with multiple ambiguous
terms (Section 2.7.2), should drive in-depth research along this path.

This research has been published in CEJCS11 [Chifu 2012], for the Naïve Bayes
method and in IPM12 [Chifu 2015], for the spectral clustering method with a deeper
analysis.

11Central European Journal of Computer Science
12Information Processing & Management
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We underlined in the previous chapter (Chapter 2) that our disambiguation
methods produce higher improvements in terms of high precision, in the case of
poorly performing queries. Thus, it would be interesting to analyze the possible
mechanisms to predict the query performance.

In this chapter we present the context of query difficulty prediction. We begin
with the notion of query difficulty and we continue with the description of query
difficulty predictors from the literature.

Next, we develop our contributions on the query difficulty prediction, that have
been published in [Chifu 2013], in CORIA1 conference. The first contribution con-
sist in proposing two linear combinations of difficulty predictors with the purpose

1COnférence en Recherche dInformation et Applications
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of obtaining a better correlation between the prediction value and the performance
measure. We obtain improvements up to 9.5% in terms of correlation coefficient
with respect to the best individual predictor. The second contribution regards the
robustness of the performance measure in relation with the correlation of the pre-
diction value. The robustness refers to the stability of the measure when changing
the retrieval systems or the test collections. We propose a more robust performance
measure that allows us to check the prediction quality more accurately.

3.1 Introduction

The search engine performance depends on many variables, such as the parameter
tuning, the retrieval model, the query formulation, the query difficulty, the docu-
ment collection and so on. It is well known that for certain queries, most IRS do not
manage to retrieve relevent documents, this making them difficult. In the TREC
context, "a topic is considered difficult when the median of the average precision
(AP) scores of all participants for that topic is below a given threshold (i.e., half of
the systems score lower than the threshold)" [Carmel 2006]. We are interested in
the query difficulty aspects, since it is important to avoid the system failure that
yields bad performance. This difficulty could be caused by ambiguity, unclear or too
vague formulation, lack of context, or the nature and the structure of the document
collection [Carmel 2006], [Mothe 2005].

Some researchers have studied the characteristics of these queries so called "dif-
ficult". In [Cronen-Townsend 2002b], the authors suggest that the coherence of the
language models of the documents that are likely to generate the query is a diffi-
culty indicator. Harman and Buckley ([Harman 2009]) underline the issue of topic
variability in the TREC tracks. They discuss the topic variation in terms of AP for
best performing systems, the wide variation in performance across topics for a given
system, the wide performance variation across topics regarding the effectiveness of
some methods such as relevance feedback, and the wide variation between two vari-
ants of the same IRS with respect to the rank of the same retrieved document. In
[Carmel 2010], the authors seek for the reasons that cause search engines to fail
for some queries and then they review various approaches that estimate the query
difficulty.

We also showed that query difficulty estimation could have useful applications.
For example, in Chapter 2 we laid stress on the fact that the disambiguation process
improves the results for queries with low performance in terms of P@k, that is to
say the difficult queries. Thus, it seems interesting to deal with difficult queries
apart, in a specific, particular way, in order to obtain better performance. For this,
it is necessary to find ways to identify them.

Various predictors of heterogeneous nature have been suggested in the literature.
Thus the predictors may be classified by their nature, such as linguistic or statistical,
or as pre-retrieval and post-retrieval, whether they take into account the retrieval
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results [Carmel 2010].
In our study, we propose to test the correlation between certain difficulty pre-

dictors and a query difficulty measure, based on AP. AP is a performance measure
widely used in literature, especially in query difficulty prediction area. We show
that the correlation for each predictor, individually, is not high. Our hypothesis is
that as the predictors are different in nature, combining them, we could get a more
correlated measurement with the difficulty. We are proposing two linear interpola-
tions between two predictors: one pre-retrieval and one post-retrieval. In addition,
we take into account the efficiency in terms of computation time, to ensure the
applicability in a practical use of a prediction system.

The other contribution is a robust method, meaning a stable method with re-
spect to changes of the retrieval method or the test collections, in order to check the
correlation of predictors with the query difficulty. We have shown that for systems
with a similar MAP, the correlation coefficients with the same difficulty predictor
may be very different. We show that it is more robust to consider the average of
several systems as a measure of difficulty, in order to avoid the variability yielded
by choosing only one system.

The rest of this chapter is structured as follows: in Section 3.2 we present the
existing research in the field of query difficulty prediction. The predictors are pre-
sented with respect to the retrieval process. If a predictor does not consider any
information resulted after the retrieval process, such as the ranked document lists
or the retrieved document scores, then it is a pre-retrieval predictor. Otherwise, it
is a post-retrieval predictor. In Section 3.3 we give details regarding the predictors
chosen to be employed further in our study. We have chosen predictors of hetero-
geneous nature and from both pre and post retrieval types, in order to cover a vast
predictor range. Section 3.4 is dedicated to our proposed predictor combinations.
We evaluate our propositions in In Section 3.5

3.2 Related work on query difficulty prediction

In this section, we present the types of prediction measures, the predictors used
in the literature and the connection between the query difficulty and AP. This
connection is verified by the value of a correlation coefficient (Spearman’s, Pearson’s,
or Kendall’s tau) between the predictor value and AP. A high correlation coefficient,
either positive or negative, suggests a good prediction quality.

By the involvement of the retrieval results in the computations, the difficulty
predictors can be divided in two categories: pre-retrieval predictors and post-
retrieval predictors [Carmel 2010].

Since pre-retrieval predictors do not require the retrieval results, they are faster
to compute and retrieval independent, thus they are more interesting for real appli-
cations. However, until now, the post-retrieval predictors have been proven to be
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more effective than pre-retrieval predictors.

3.2.1 Pre-retrieval predictors

Pre-retrieval prediction estimates the query difficulty before the retrieval process
takes place. Because of that, only the query terms together with certain predefined
statistics extracted from the documents can be utilized for prediction.

For example, one could consider the pre-retrieval predictor based on the query
length. The query length represents the number of unique words in the query, after
eliminating the stop words. We could imagine that the longer the query is, the easier
it is for the IRS to respond, having in mind the contextual contribution of the words.
In [He 2004], the authors have shown that, contrarily to this hypothesis, there is
no correlation between the query length and the system performance. They have
used TREC4, TREC7 and TREC8 collections for their tests. In addition, treating
long queries may be difficult, while they generally contain considerable amounts of
noise (terms considered relevant by the users, that in fact create confusion for the
system). The authors have reported a weaker correlation for the Simplified Clarity
Score predictor, which will be described later in this section, in the case of long
queries and they assumed that the cause might be the maximum likelihood of the
query model, which becomes not reliable when the query length increases.

The pre-retrieval predictors can be extracted either based on linguistic methods,
or on statistical methods. The linguistic methods apply natural language process-
ing (NLP) techniques and analyze the query expression, in order to obtain query
difficulty indicators such as level of ambiguity or polysemy.

Mothe and Tanguy [Mothe 2005] have extracted 16 different linguistic query
features. These features include morphological features such as the average number
of morphemes per query word. Another linguistic feature studied by Mothe and
Tanguy consists in polysemy measured by the average number of synsets in Word-
Net, per word. They have shown that the majority of linguistic features, such as
the average number of proper nouns, the average number of numerical values, or the
average number of prepositions, are not strongly correlated with IRS performance.
In the same manner, negative results have been reported by Hauff [Hauff 2010b],
who has tested the average semantic distance of query terms to predict performance.
The semantic distance or semantic relatedness between terms can be computed from
co-occurence statistics in document collections or from WordNet. It measures how
related two terms are.

Statistical predictors can be classified in four main categories [Carmel 2010],
according to the query characteristics that they try to estimate: query specificity,
the common terms between the query and the collection, the coherence of the query
term distribution and the relationship strength between the query terms.

The statistical methods analyze the query terms distribution in the document
collection, searching for deviations in the distribution of the query terms frequency.
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In this context, the pre-retrieval statistical predictors have been extensively stud-
ied [He 2004], [He 2008], [Zhao 2008], [Hauff 2008]. Two term-based statistics have
been frequently used: the inverse document frequency (idf ) and the inverse collec-
tion term frequency (ictf ) [Hauff 2010a]. Hauff has used several TREC collections,
such as TREC Robust, WT10G and GOV2 for experiments; correlation values she
reports are up to 0.480 in the case of idf and up to 0.465 in the case of ictf , respec-
tively. The Kendall’s τ correlation coefficient has been employed for obtaining the
predictor performance.

The query scope (QS) predictor, proposed by He and Ounis [He 2004], mea-
sures the percentage of documents containing at least one of the query terms in the
collection. The query scope yielded performances up to 0.363 in terms of correla-
tion. The simplified clarity score (SCS) measures the Kullback-Leibler divergence
between the simplified query language model and the collection language model,
as a query specificity indicator. The simplified query language model is given by
the equation qtf

ql
, where qtf is the number of occurrences of a query term in the

query and ql is the query length. The correlation coefficient values for the SCS have
been up to 0.448. The experiments have been conducted over TREC4, TREC7 and
TREC8 collections and the Spearman’s correlation coefficient has been used.

In [Zhao 2008], the authors have measured the similarity based on a vector
space model between the query and the collection, while considering the collection
as a single large document composed of concatenation of all the documents. They
have conducted experiments on TREC Robust, WT10G and GOV2 benchmark
collections, with reported result values up to 0.640 on a subset of queries and up to
0.478 in general, in terms of Spearman’s correlation coefficient.

Regarding the coherence, He et al. [He 2008] have studied the potential of
query-coherence-based measures to predict query difficulty. The query coherence
with this respect is related to the inter-similarity of documents containing the query
terms. This type of measures require a heavy analysis during the indexation process,
in order to be exploited during search. Zhao et al. [Zhao 2008] have proposed a
less expensive approach, which measures the variance of the term weights over the
documents containing it within the collection.

To finish with the statistical measures, we mention the term relatedness based
predictors. They explore term co-occurrences statistics. If the query terms co-occur
frequently in the collection, that query is supposed to have a good performance,
assuming all query terms are related to the same topic [Metzler 2005], [Hauff 2010a].

In conclusion, the pre-retrieval predictors are faster to compute since they are
retrieval process independent. However, even if their correlation with average preci-
sion is significant, they still do not reach correlation levels high enough to state that
they represent efficient prediction methods. The pre-retrieval predictors based on
idf yield the best results, with correlation coefficient values up to 0.48 [Hauff 2010b].
Next, we present the post-retrieval predictors, which are more correlated with av-
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erage precision than the pre-retrieval predictors.

3.2.2 Post-retrieval predictors

In contrast with the pre-retrieval methods, the post-retrieval prediction methods
analyze the retrieval results, that is, the top retrieved documents in response to
a query. We have to mention that the prediction quality strictly depends on the
retrieval process, as different results are expected while using different retrieval
methods [He 2004], [Zhao 2008].

The post-retrieval methods can be classified as follows: "Clarity"-based methods,
robustness-based methods and score distribution based methods.

The Clarity approach for performance prediction of an IRS is based on mea-
suring the coherence (clarity) of the result-list with respect to the corpus. The
Clarity measure applied by Cronen-Townsend et al. [Cronen-Townsend 2002b], is
based on the KL-divergence between the language model of the result set and the
language model of the entire collection. They have obtained a Spearman’s corre-
lation coefficient value up to 0.577, over TREC4-8 collections and over AP88+89
collection.

Zhou and Croft [Zhou 2007] have proposed a framework for measuring query
robustness, named Query Feedback (QF), which models retrieval as a communica-
tion channel problem. From the initial query, a new query is constructed, by adding
noisy terms, and the overlap between the new retrieval and the initial results is con-
sidered as a robustness measure. A robust query represents an easy query. The
Query Feedback (QF) yielded Pearson’s correlation coefficient values up to 0.480,
tested over Robust04, Robust05 adhoc and Terabyte TB06 adhoc tracks.

Query perturbation has also been examined by Vinay et al. [Vinay 2006], who
has studied the effect of small modifications to the query term weights on the search
results. Similarly, if the results were changed drastically then the query is presumed
to be difficult. The experiments conducted over 200 topics (301-450 and 601-650)
and their corresponding documents from the TREC Robust collection have leaded
to results up to 0.521 in terms of Kendall τ correlation coefficient.

The effect of document perturbations on the top retrieved document list is
another form of robustness estimation [Vinay 2006], [Zhou 2006]. This robustness
is about the stability of the retrieved document list with respect to noise injection
in the query. The top retrieved documents are injected with noise (for example,
by adding or removing terms). Afterwards, these documents are re-ranked. High
similarity between the original list and the re-ranked list reveals query robustness.
A robust query from this point of view should be an easy query, therefore the
robustness measurement is a difficulty predictor. In [Zhou 2006] the tests have
been done over TREC1-5, TREC Robust and Terabyte04&05, with results up to
0.612 in terms of Pearson’s correlation coefficient.

Regarding the retrieval perturbation, Aslam and Pavlu [Aslam 2007] have stud-
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ied query robustness with respect to using different retrieval methods. They have
proven that the disagreement between result lists retrieved for the query by multi-
ple scoring functions is an indication for query difficulty. Experimental results on
TREC data sets (TREC5-8, TREC Robust and Terabyte04&05) show a relatively
strong correlation between the agreement of systems and query performance. An-
alyzing the submission of all the participants at several TREC tracks, Aslam and
Pavlu have shown that their diversity predictor, the Jensen-Shannon divergence, is
strongly correlated to query difficulty, difficulty measured by the median system (in
terms of MAP) among all the participants. They have reported correlations up to
0.623, in terms of Kendall τ correlation coefficient.

Finally, the score distribution analysis for query difficulty prediction is fast, in
terms of computational time, because it is not necessary to treat the document
terms, unlike Clarity or robustness. A proposed predictor would be the Weighted
Information Gain (WIG) [Zhou 2007]. WIG essentially measures the divergence
between the mean retrieval score of top-ranked documents and that of the entire
corpus. The reported results reach Pearson’s correlation coefficient values up to
0.478, over TREC Robust and GOV2 collections.

The Normalized Query Commitment (NQC ) predictor [Shtok 2009] measures
the standard deviation of the retrieved documents, normalized by the score of the
entire collection. The reported performance of NQC was up to 0.7 in terms of Pear-
son’s correlation coefficient. The experiments have been conducted over TREC1-3,
TREC4-5, TREC Robust, WT10G and GOV2.

Kurland et al. proposed in [Kurland 2012] a probabilistic framework in order to
derive and explain existing predictors, showing that even though some predictors
seem very different, they share the same formal basis. They use the same framework
to integrate pre-retrieval and post-retrieval predictors. The experiments have been
conducted over TREC5, TREC Robust, WT10G, GOV2 and parts of ClueWeb09
and Clueb10 collections. They have reported results that overcome, over several
collections, the level of 0.70, in terms of Pearson’s correlation coefficient.

In conclusion, the post-retrieval predictors generally yield better prediction per-
formance than the pre-retrieval ones. We underline here the NQC [Shtok 2009],
which is reported to obtain correlation coefficients up to 0.70. Another strong post-
retrieval predictor would be QF.

A summary of the presented predictors is shown in Table 3.1.
We also summarize the maximum correlations reported for the main results from

the literature (see Table 3.2). We mention the authors, the name of the predictor
(where it is the case), the correlation values, the employed correlation coefficients
and the test collections. We stress on the fact that results are not comparable,
since they have been produced using different correlation coefficients, different test
collections and different AP values as difficulty measures.

In the following section we present several approaches from the literature that
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Table 3.1: Summary on query difficulty predictors

Authors Pre-ret. Post-ret. Predictors
[He 2004] x query length
[Mothe 2005] x 16 linguistic features, polysemy included
[Hauff 2010a] x average semantic distance of query terms
idf x term statistics: inverse document fre-

quency
[Hauff 2010b] (ictf) x term statistics: inverse collection term fre-

quency
[He 2004] (QS) x documents containing at least one query

term
[Zhao 2008] x vector space model; similarity query-

collection
[He 2008] x inter-similarity of documents containing

query terms
[Zhao 2008] x variance of term weights over the docu-

ments
[Metzler 2005] x statistical measure: term co-occurence
[Hauff 2010b] x statistical measure: term co-occurence
[Cronen-Townsend 2002a]
(Clarity)

x KL-divergence, language model

[Zhou 2007] (QF) x overlap of two retrieved lists
[Vinay 2006] x impact of small changes in queries
[Aslam 2007] x disagreement between result lists
[Zhou 2007] x divergence between the mean retrieval

scores and the corpus
[Shtok 2009] (NQC) x normalized standard deviation of retrieval

scores
[Kurland 2012] x x Probabilistic experimental framework

combine query difficulty predictors.

3.2.3 Predictor combinations

In [Hauff 2009], the authors combine pre-retrieval predictors in order to better pre-
dict the query performance. They use regression to combine the predictors and the
method is tested over TREC6, TREC7 and TREC8 considered together, WT10G
and GOV2. The results show that the predictor combinations were comparable the
best single predictors.

Besides the probabilistic framework for query difficulty predictors, Kurland et
al. [Kurland 2012] propose predictor combinations based on sum, average or prod-
uct. They also propose a method to integrate pre- and post-retrieval predictors,
based on probabilities. Their contribution is tested over various collections, such
as TREC5, Robust, WT10G, GOV2, ClueWeb09, and ClueWeb10. They report
important improvements in the case of combinations, compared to single predictors.
For instance, over Robust, the average idf has a Pearson’s correlation coefficient of
0.466 and the QF predictor has a correlation of 0.500. Their combination yields a
correlation coefficient of 0.602.
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Table 3.2: Results of query difficulty predictors from the literature

Predictor Maximal
correlation

Correlation
coefficient Collections

Pre-retrieval predictors

[Hauff 2010b](idf) 0.480 Kendal’s τ
Robust, WT10G,
GOV2

[Hauff 2010b](ictf) 0.465 Kendal’s τ
Robust, WT10G,
GOV2

[He 2004](QS) 0.363 Spearman TREC4, TREC7,
TREC8

[He 2004](SCS) 0.448 Spearman TREC4, TREC7,
TREC8

[Zhao 2008] 0.478 Spearman Robust, WT10G,
GOV2

[Mothe 2005]
(SYNSETS) -0.354 Pearson TREC3, TREC5,

TREC6, TREC7
Post-retrieval predictors

[Cronen-Townsend 2004b]
(Clarity) 0.577 Spearman TREC4-8, AP88-89

[Zhou 2007](QF) 0.480 Pearson Robust, Terabyte06
[Vinay 2006] 0.521 Kendall’s τ Robust

[Zhou 2006] 0.612 Pearson TREC1-5, Robust,
Terabyte04&05

[Aslam 2007] 0.623 Kendall’s τ
TREC5-8, Robust,
Terabyte04&05

[Zhou 2007](WIG) 0.478 Pearson Robust, GOV2

[Shtok 2009](NQC) 0.700 Pearson
TREC1-3, TREC4-5,
Robust, WT10G,
GOV2

[Kurland 2012] 0.700 Pearson
TREC5, Robust,
WT10G, GOV2,
ClueWeb09, ClueWeb10

In [Lee 2014], the authors use SVM based on features extracted from multiple
predictors with the purpose of choosing between inter-language and intra-language
PRF in the context of cross-language IR. They have manually created 50 queries
in English that are then used to retrieve documents written in Chinese. They
reported improvements up to 27%, compared to monolingual baseline approaches.
In Chapter 4, we also employ SVM learning with features based on query difficulty
predictors in the context of query expansion.

Sarnikar et al. [Sarnikar 2014] propose methods that combine various predictors,
using them as features for learning. By regression and SVM, the authors try to route
queries, in the case of multiple collections, classified by domains. Their models are
tested over CACM, CISI, CRAN, TIME and TREC9 collections. The reported
results show minor improvements in terms of MAP (from 0.2755 to 0.2783 in the
case of TREC9).

We have to mention the variety of applications for query difficulty predictors
and for predictor combinations, such as selective query expansion, query routing in
domain-specific repositories, or cross-language IR.
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3.3 The retained predictors

Individual query difficulty predictors are, in most cases, not applicable in real appli-
cations, since they are insufficiently correlated with the difficulty method. However,
due to their heterogeneous nature, they cover various aspects of difficulty, as pre-
sented in Section 3.2. This drives our research interest to combine predictors in
order to obtain better correlation coefficients with query difficulty.

We use both pre-retrieval and post-retrieval predictors in the contributions we
propose [Chifu 2013], [Chifu 2014]. Moreover, the retained predictors are very dif-
ferent in nature (linguistic, statistical, based on term distribution, based on term
similarity). The hypothesis is that heterogeneous predictors would cover more effi-
ciently the various aspects of query difficulty. In addition, the retained predictors
are among the best in the literature, such as idf, NQC, or QF (see Section 3.2).

Pre-retrieval predictors may be calculated either using exclusively information
on the query terms, or also using the document collection itself. When based on
the query terms only, pre-retrieval predictors can be computed easier than when
the entire collection is involved. However, the information they carry is rather weak
since it is based on few information (only the query text and some features on the
terms it consists of). On the contrary, post-retrieval predictors treat the retrieved
document lists which contain extra information (document scores, ranks). Even
though this type of predictors involve a retrieval process in order to treat the result
list, they do not require any supplementary collection processing, meaning that the
amount of resources, in terms of time and computations, stays reasonable.

In the following sections, we give more details regarding the query difficulty pre-
dictions that we have selected for our models. The predictors retained for our exper-
iments are among the best from literature and they yield the higher correlation with
query difficulty, except for the predictor based on WordNet senses [Mothe 2005], for
which the authors report a weak correlation. However, this polysemy predictor re-
mains the most correlated with difficulty from its class of linguistic predictors and,
moreover, we will see later on that it is useful when combined with predictors of
other nature (see Section 3.6).

3.3.1 WordNet Senses

WordNet Senses (WNS) [Mothe 2005] represents a pre-retrieval linguistic predic-
tor, it is an ambiguity measure and it computes the average number of WordNet2

senses for all the query terms of a query q:

WNS(q) = 1
|q|
∑
t∈q

sensest, (3.1)

2http://wordnet.princeton.edu/
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where sensest represents the number of WordNet synsets for the query term t from
q. This predictor will be employed in one of the proposed predictor combinations,
described in Section 3.4.

3.3.2 Inverse Document Frequency

Inverse Document Frequency (IDF) is a statistical pre-retrieval predictor and
it measures if a term is either rare or common in the corpus. Its value for a certain
query represents the average of idf s for all the query terms. The IDF for a query q
(IDF (q)) is computed as follows:

IDF (q) = 1
|q|
∑
t∈q

log10

(
N

Nt + 1

)
, (3.2)

where N is the total number of documents in the collection, Nt the number of
documents containing the term t. This predictor is employed in the second proposed
predictor combination, presented in Section 3.4.

3.3.3 Standard Deviation

Standard Deviation (STD) represents a statistical post-retrieval predictor that
measures the degree of variation with respect to the average for the list of scores
assigned to the retrieved documents, corresponding to a query. It is a variant of
NQC [Shtok 2009], without normalization, since we do not consider the score for
the entire collection as a document. For a query q and for the first Nq retrieved
documents, the STD is calculated by the formula:

STD(q) =
(

1
Nq

Nq∑
i=1

(
score(dq

i ) − 1
Nq

Nq∑
j=1

score(dq
j)
)2
) 1

2

, (3.3)

where score(Dq
i ) represents the score of the ith retrieved document for q and Nq

stands for the number of documents retrieved by the IRS for q. While WNS and
IDF are retrieval model independent, for STD the retrieval model represents a
parameter. This predictor represents the main term for both predictor combinations
proposed in Section 3.4.

3.3.4 Query Feedback

Query Feedback (QF), proposed in [Zhou 2007] (see Section 3.2.2), is a post-
retrieval predictor which models retrieval as a communication channel problem. It
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computes the overlap between two retrieval lists obtained by processing an initial
query and the same query expanded by additional terms, respectively. Having the
two retrieved lists, the overlap represents the number of documents that these lists
have in common. A cut-off level x could be established for the document lists,
that means the first x retrieved documents only are considered for the overlap. In
order to obtain a measure between 0 and 1, the overlap is normalized by x. The
parameters for QF are the cut-off level and the retrieval model. For a query q

and the two retrieved document lists L1 and L2, with a cut-off level x, the QF is
computed as follows:

QF (Lx
1(q), Lx

2(q)) = |Lx
1(q) ∩ Lx

2(q)|
x

. (3.4)

Since we mentioned in Section 3.2 that reported results from the literature
are not comparable, we reimplemented the retained predictors and we measured
their Spearman’s correlation coefficient with a difficulty measure, over TREC7 and
TREC8. The values are reported in Table 3.3. The best predictor is STD and the
weakest is WNS.

Table 3.3: Correlation coefficients between the reimplemented predictors and the difficulty mea-
sure, for TREC7 and TREC8

Predictor TREC7 TREC8
Corr. p-value Corr. p-value

W NS −0.1796017 0.08747 −0.2814032 0.05086
IDF 0.2986315 0.01082 0.3175586 0.00165
ST D 0.5531333 0.03515 0.5446819 0.00135
QF 0.4464256 0.00131 0.4927206 0.00019

In the following section we propose two linear combinations between predictors
presented above, with the purpose of improving the prediction quality of individual
predictors. This predictor will be employed in Chapters 4 and 5 to generate learning
features.

3.4 Combinations of difficulty predictors

Even if single predictors are not sufficiently correlated with the AP as a difficulty
measure such that they may be applied in real applications, we believe th at com-
bining them will boost the predicting performance. Moreover, a heterogeneous
nature of predictors targeted for combination will supposedly induce a higher corre-
lation. We therefore propose two linear combinations between predictors described
in section 3.3. The ease of implementation and the possibility of weighting the com-
bination components made the linear combination to seem an appropriate choice.
Intuitively, the importance of the predictors within the combinations must not be
equal and shall be tuned. Most probably, a better predictor will have a higher
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importance.
The first combination takes into account the STD and the WNS creating a

post/pre-retrieval combination. Even though the pre-retrieval predictor WNS is
weakly correlated to AP, the hypothesis is that in combination it might enhance
the prediction quality. The computations for the first combination, for a query q

are the following:

COMB1(q) = λ
STD(q)

max(STD)
+ (1 − λ) 1

WNS(q)
, (3.5)

where max(STD) represents the maximal STD value over all queries from a col-
lection, in order to normalize the ratio corresponding to STD between 0 and 1. λ
is a weighting coefficient which gives a varies the importance of STD and WNS in
the final result. Here we consider the inverse of WNS, since the hypothesis is that
a more ambiguous query (higher WNS) will yield a lower performance.

The second predictor combination concerns the STD and IDF measures and
is computed by the following equation:

COMB2(q) = λ
STD(q)

max(STD)
+ (1 − λ) IDF (q)

max(IDF )
, (3.6)

where max(STD) and max(IDF ) represent the normalization factor, that is the
maximal values per collection, of STD and IDF , respectively. λ has the same role
as for the COMB1 predictor.

3.5 Evaluation

This section describes the experimental framework we propose, with the collections
and the parameter settings for predictors, used in our work.

In order to evaluate the predictors we mentioned, we used two TREC benchmark
collections, TREC7 and TREC8, respectively (see Section 1.4.3). They are widely
used test collections.

3.5.1 Parameter setup for predictors

For the STD predictor, we used runs built by Terrier (see Section 1.4.6), trying
various parameter configurations. For each collection, we opted for the parameter
setting that gives the best MAP. We used the set of retrieved documents, repre-
senting the first 1000 documents which have obtained the highest scores for the
established parameter configuration. The MAP values, of 0.2988 for TREC7 and
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0.2315 for TREC8, corresponding to the chosen runs, are consistent with other work
from the literature [He 2005], [Zhong 2012]. We present the retained configurations
in the following paragraph.

The configuration which yielded the best MAP results, for TREC7, is as follows:
a two step indexing (with both and direct and inverted indexes), using the BB2
weighting model (with parameter c = 1). As for the query expansion model, the
model was the parameter free KL model (KLbfree). This configuration considered
3 documents for expansion. A term must appear in at least 2 documents in order
to be valid for query expansion. Finally, the number of query expansion terms to
be added was set to 10. The queries used all the three topic parts (title, description
and narrative), that are described in Section 1.4.4. On the other hand, for TREC8,
the best parameter configuration stands in place, except for two differences: the
query expansion model is the parameter free DFR (DFRee) and the narrative part
of the topic is not involved anymore in the query construction.

The post-retrieval predictor STD uses the document scores from the list re-
trievad by Terrier, with the purpose of computing the standard deviation. Contrar-
ily, the other two predictors involved in our combinations (WNS and IDF ) do not
imply the retrieval process in order to predict the query difficulty.

For the IDF we need to know the total number of documents in which a query
term t appears (Nt, in Equation 3.2). Terrier provides the lexicon access after the
indexing step. Throughout the information concerning the terms vocabulary we also
can find the Nt, which is required. We considered the vocabulary after stemming,
in order to eliminate various forms of a term.

Regarding the WNS, we used a part of speech tagger (Stanford POS Tagger)
to identify the part of speech for every query term. We then search in WordNet
(see Section 2.2) the number of synsets for a given term, with that particular part
of speech identified by the part of speech tagger.

3.5.2 Prediction quality

Our first contribution in the query difficulty context context has been the propo-
sition of linear combinations of heterogeneous predictors in order to improve the
prediction accuracy. We present here our second contribution which consists in
using the average over several systems, in terms of AP per query, in order to obtain
a more robust difficulty measure, as ground truth to test predictor correlations.

To analyze the prediction quality, we computed the Spearman’s correlation co-
efficient (see Section 1.4.2) for two variables: the predictor in cause and the mea-
sure of query difficulty. The Spearman’s correlation coefficient is less sensitive to
strong outliers than Pearson’s correlation coefficient. As a measure for difficulty
we have chosen the average AP, per query, for all participant systems at TREC7
and at TREC8, respectively. Research in this area have shown that this averaged-
based measure is robust in terms of collection independence and system variability
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[Bigot 2011], [Carmel 2006]. [Carmel 2006] et [Aslam 2007] propose the median sys-
tem in terms of AP as a difficulty measure. However, in Section 3.6.1, we will show
that it is more robust to consider an average MAP than the MAP of a single system.
Indeed, the result variability is very important, depending on the system choice.

For IDF , we find a positive correlation based on Spearman’s correlation coeffi-
cient [Chifu 2013]. In the same way, a greater IDF value indicates an easier query.
A positive correlation is also to be found in the case of the STD [Chifu 2013] and
of the QF [Zhou 2007], respectively. Contrarily, the correlation between WNS and
AP is negative, meaning that a higher number of ambiguous query terms involves
a more difficult query.

The correlation results for the predictors, both individual and in combinations,
are underlined in the following section.

3.6 Results and discussion

The obtained results are presented in this section. We first analyze the variability of
correlations between a difficulty predictor and several AP values, corresponding to
several reference systems. The analysis of this variability represents an argument
for proposing our contribution regarding the robustness of a difficulty measure,
when considering the AP average over multiple systems. Then we comment on the
correlations between the predictors we proposed and the new difficulty measure,
described in Section 3.5.2 (average AP over TREC participants).

3.6.1 Variability in terms of predictor correlations

Unlike several studies that use the AP values of a single system to evaluate their pre-
dictors [Aslam 2007], [Cronen-Townsend 2002b], we propose here to use the average
in terms of AP for multiple systems in the calculations. We justify this approach
by the variability of correlations between predictors and the AP values for different
IRS. In this section, we illustrate this hypothesis through the correlation analysis
of the IDF predictor and the AP. We chose the predictor IDF as a reference, be-
cause its value is independent of the system used, being a pre-retrieval predictor.
Moreover, IDF is among the best pre-retrieval predictors [Hauff 2010a].

Regarding the retained systems, we selected 9 systems that participated to the
TREC7 and TREC8 competitions, respectively. See Section 1.4.5 for more details
on TREC participants. The criterion to choose the systems was their performance
in terms of MAP, which must cover all the range of MAP values, from worst to best.
Among the 10 considered systems we have the best participant system, the weakest
participant system, and also the simulated system which would have obtained the
average AP in per query, over multiple systems, that represents our approach. In
this scenario the simulated system represents the average for all participants in
TREC7 and TREC8, respectivelly. We computed, for each system, the Spearman
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correlation coefficient and the p-value (see Section 1.4.2) between IDF and the
difficulty measure, in terms of AP. Correlations are to be found in Table 3.4 and in
Table 3.5. Results are sorted in descending order with respect to MAP. The system
representing the average of all systems is called AvgMAP.

The correlation coefficient values, as well as the p-values, vary considerably. For
example, for systems with MAP values between 0.2609 and 0.3346, the correlations
vary between 0.22 and 0.34 with their corresponding p-values between 0.0008 and
0.01857, for TREC8 (see Table 3.5). In addition, for TREC7 (see Table 3.4) the best
systems had a p-value higher than 0.05 (0.10650 and 0.11830, respectively), thus
the results are not statistically significant, meaning that the correlation value is
not reliable. Regarding the systems with a low MAP the confidence in correlations
is not very interesting, because they represent systems which in any case are not
effective. For a MAP value of 0.0287 we have a correlation of 0.5083825 with a p-
value of 0.15610 and for a very close MAP value of 0.0273, we obtained a correlation
of 0.2158393 and a p-value of 0.00167 (see Table 3.5), therefore, the variation is very
important.

Table 3.4: Correlations between IDF and AP , per systems, for TREC7. The MAP for each
system is also mentioned

TREC7
Name MAP Corr. p-value

CLARIT98COMB 0.3702 0.2329948 0.10650
t7miti1 0.3675 0.2505162 0.11830
uoftimgr 0.2755 0.2632893 0.02930
ok7as 0.2614 0.2039376 0.12190
FLab7atE 0.2020 0.2692437 0.04071
AvgMAP 0.1992 0.2986315 0.01082
Brkly24 0.1714 0.3014238 0.01299
APL985L 0.1576 0.2406300 0.03061
KD70000 0.0250 0.1737295 0.00688
dsir07a01 0.0117 0.2579675 0.46870

Table 3.5: Correlations between IDF and AP , per systems, for TREC8. The MAP for each
system is also mentioned

TREC8
Name MAP Corr. p-value

perf-class 0.4726 0.3430094 0.00697
CL99SDopt2 0.3520 0.2228625 0.03048
8manexT3D1N0 0.3346 0.2201786 0.01857
ok8amxc 0.3169 0.2789503 0.00647
ibmg99b 0.2609 0.3445461 0.00080
AvgMAP 0.2533 0.3175586 0.00165
Dm8TFbn 0.1630 0.3768819 0.00010
AntHoc1 0.0287 0.5083825 0.15610
isa25t 0.0273 0.2158393 0.00167
isa25 0.0026 0.3642227 7.57E-06

This analysis shows that the correlations vary dramatically depending on the
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selected systems as a reference, even if we consider an overall effective system in
terms of MAP. This led us to choose rather a system constructed from the average
AP of several systems, as the basis for calculation. This will represent the reference
used in the following section to measure predictor correlation and efficiency.

3.6.2 Correlations of predictor combinations

After establishing that is more robust with respect to system variability to choose
the AP average as a difficulty measure, we present in Table 3.6 the correlations be-
tween this measure and predictors we retained, for TREC7 and TREC8 collections.
For the COMB1 (the interpolation between STD and WNS from Equation 3.5)
and the COMB2 (the interpolation between STD and IDF from Equation 3.6)
predictor combination, presented in Section 3.4, we tested various λ parameter val-
ues between 0 and 1. We retained the values that yielded the best correlation
coefficients, λ = 0.7 for TREC7 and λ = 0.78 for TREC8, respectively.

Table 3.6: Correlation coefficients between the proposed predictors and the difficulty measure,
for TREC7 and TREC8

Predictor TREC7 TREC8
Corr. p-value Corr. p-value

ST D 0.5531333 0.03515 0.5446819 0.00135
W NS −0.1796017 0.08747 −0.2814032 0.05086
IDF 0.2986315 0.01082 0.3175586 0.00165
COMB1 0.4529652 0.01986 0.5965426 0.00023
COMB2 0.5601441 0.00567 0.5849220 0.00010

Among the three proposed predictors (STD, WNS and IDF ), STD is the most
correlated with the difficulty measure, while WNS is the most weakly correlated.
The p-values for WNS show that its correlations are not statistically significant.
On the contrary, the combination between STD and WNS (COMB1) yields a
high correlation coefficient, with also a high degree of confidence (Corr=0.5965426
and p-value=0.000231, for TREC8).

The IDF predictor is more strongly correlated than the WNS predictor and
this is certainly the reason why the STD and IDF combination (COMB2) performs
best.

With regard to the lambda parameter, the value that generated the best results
was 0.78 for COMB1 and 0.7 for COMB2, respectively. The best performing
predictor, STD therefore provides more than 70% in the combination predictors.
For COMB1, WNS having a weak individual correlation, STD shall take even
more weight (0.78).

For the same benchmark collections (TREC7 and TREC8), the "Clarity Score"
[Cronen-Townsend 2002a] yields an average correlation coefficient of 0.535. The
COMB2 predictor we propose allows to obtain an average correlation coefficient of
0.573, in the same context, with respect to the AP of a single system, not specified
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by the authors. "Clarity Score" computes the relative entropy between the query
language model and the collection language model. This process is computationally
heavy since it calculates the relevance scores for the query model [He 2004]. On
the contrary, the STD directly uses the retrieved documents scores and the IDF
uses the term frequencies from the vocabulary created by the search engine, thus
the COMB2 predictor is faster to compute.

3.7 Conclusion

In conclusion, in this chapter we presented the existing query difficulty predictors,
we proposed new predictor combinations and a query difficulty measure to test its
correlations with the predictors.

We showed that it is more robust to consider the average of several systems as a
measure of difficulty to compare the correlations with different predictors, in order
to avoid the variability generated by only one system. We have shown that for
systems with a similar MAP, the correlation coefficients with the same predictor of
difficulty can be very different. In addition, for TREC7, the correlation between the
AP and the difficulty predictor, when the best system is chosen, is not statistically
significant (p-value).

On the other hand, we proved that if the predictors are heterogeneous in nature
(statistical, linguistic, pre-retrieval, post-retrieval, etc.), their combination may pro-
duce a stronger correlation with the measure of difficulty. We considered here two
linear combinations, each based on the interpolation of two predictors. COMB1
is the interpolation between STD and WNS and COMB2 is the interpolation be-
tween STD and IDF . COMB1 yields better correlation coefficient over TREC7,
while COMB2 yields better correlation coefficient over TREC8. Moreover, COMB1
is more stable with respect to the p-value in the case of both test collections, sug-
gesting that this combinations is more reliable.

Finally, the idea of successfully combining query difficulty predictors suggests an
application that consists in learning to decide which system would respond best for
a particular query, when various systems are available, all based on query difficulty
prediction queries. For instance, since the query expansion may harm the perfor-
mance of some queries, while improving performance of others (see Section 1.3), it
would be interesting to be able to learn which query expansion method should be
applied for each query. This premise is tested in the next chapter, dedicated to
selective query expansion.
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We have seen in the Chapter 3 that combining query difficulty predictors of
heterogeneous nature may enhance the prediction accuracy. Moreover, even though
an individual predictor is weakly correlated with a difficulty measure, it can still
have a positive impact on prediction quality when used in combinations. On the
other hand, choosing which query expansion method should be employed, in order
to obtain better retrieval performance, represents a difficult problem. It would be
interesting to be able to learn which expansion to use for each query. Thus, in this
chapter we propose to bring together query difficulty prediction and machine learn-
ing with the purpose of obtaining a selective query expansion method. We propose
a SVM-based approach with features based on various query difficulty predictors,
in order to choose between two query expansion types. This research was published
in [Chifu 2014], in CORIA conference.

4.1 Introduction

We noticed so far that IRS performance is strongly dependent on queries. In Chap-
ter 2, the proposed query disambiguation-based method was proved as beneficial to
IR by yielding improvements on high precision, with even more impact on queries
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with low performance. In Chapter 3 we tried to obtain a better correlation between
predictors and difficulty, by interpolating the values of individual predictors of het-
erogeneous nature, with the purpose of making difficulty prediction more useful in
real applications. One possible application could be selecting which system or what
method should be applied for a particular query, that is to say selective IR.

We introduce in this chapter a selective IR method that learns to choose between
two types of QE, one based on pseudo-relevance feedback (PRF) and the other based
on simulated manual refinement of pseudo-relevance feedback (PRF). The learning
mechanism is based on features extracted from query difficulty predictors. First, we
briefly present the selective IR field and then we focus on the selective QE according
to query difficulty, which represents the context of our work in this chapter.

Selective IR refers to the selection of the most appropriate search engine con-
figuration according to the context and the query. This challenge can find one
of its origins in the consideration of query and system variability [Buckley 2004]
[Lv 2009]. Because of variability in performance across queries and systems, it is
natural to think of methods that are query-dependent. On the other hand, query
difficulty is another feature that should be considered in systems [De Loupy 2000],
[Carpineto 2001a]. Indeed, in the case of easy queries, one can consider that any
reasonable configuration can be used since any of them will perform well on the
user’s point of view. On the contrary, in the case of difficult queries, the choice
of configuration can make the difference between good or bad results, since for
such queries most systems fail to retrieve relevant documents. Intuitively, one can
maximize the gain in terms of relevant retrieved documents by using appropriate
techniques.

Selecting the best configuration on a per query basis can lead to high perfor-
mance improvement. Bigot et al. show that it is possible to learn the best configura-
tion system using a sample of documents and relevance judgments [Bigot 2011].For
example, Peng et al. propose to select the best learning to rank function on a per
query basis [Peng 2010].

Other approaches focus on difficult queries and the case of query expansion
(QE). One of the main hypotheses is that QE and specifically QE based on pseudo-
relevance feedback (PRF) can lower results for poor performing queries since QE
will be based on non relevant documents. Several authors propose to selectively
apply QE based on query difficulty predictors as we do. The idea is to avoid
the application of QE when it is likely to decrease performance [Amati 2004b],
[Cronen-Townsend 2004a], [Chen 2012].

Rather than just deciding whether QE should be applied or not, some ap-
proaches try to apply QE differently according to queries [He 2004], [Cao 2008],
[Lv 2009]. This also represents the context of our contribution. Lv and Zhai study
the impact of the initial query in the PRF by the means of logistic regression. The
features are based on queries and feedback documents [Lv 2009]. He and Ounis
propose a method for selecting the most appropriate term-weighting model as a
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pre-retrieval technique [He 2004]. Cao et al. propose a term classification method
to predict the usefulness of expansion term candidates [Cao 2008]. On the other
hand, we propose a machine learning method two select between two types of QE,
based on features extracted from query difficulty predictors.

Other approaches also rely on the capability of distinguishing difficult queries.
We reviewed the query difficulty prediction in Chapter 3. Current query difficulty
prediction approaches (ours included) tend to combine various evidence, generally
based on some statistics [Kurland 2012], [Sarnikar 2014]. Many individual predic-
tors such as the clarity score [Cronen-Townsend 2002b], the query scope [He 2004],
the weighted information gain [Zhou 2007], or the normalized query commitment
[Shtok 2009] are based on some statistics and correspond either to pre-retrieval or
to post-retrieval predictors. Linguistics oriented predictors have also been studied
[Mothe 2005]. These predictors can be used as evidence for selective application
of QE or other search component. For more details on existing query difficulty
predictors, see Section 3.2.

In our contribution, we consider QE as a key issue in selective IR processes,
depending on the query. There are many ways QE can be achieved. In his sur-
vey, Carpineto distinguishes between RF, interactive query refinement, word sense
disambiguation, and search result clustering [Carpineto 2012]. We employed word
sense disambiguation and clustering retrieved documents in Chapter 2. Here, we
focus on the first two types. RF uses information from the retrieved documents
judged as relevant. Alternatively, PRF considers the top retrieved documents as
relevant. While the first method implies caption of users’ judgment or interaction,
PRF can be fully automatic. On the other hand, interactive query refinement or ex-
pansion implies to use user studies or to consider query logs. Alternative solutions
consist in simulating query refinement [Zhao 2012].

In our approach we consider a longer query (simulated by using the descriptive
part of the queries) as a kind of query refinement. We hypothesize that the two types
of QE are complementary and can be used in a selective way, depending on the query.
Previous approaches using QE in a selective process are of two kinds: some consider
selective QE (some queries will be expanded other will not); others decide which QE
should be used. Our approach follows this second trend, considering that a difficult
query should require a certain type of expansion accordingly to difficulty nature.
Moreover, compared to other approaches, our method combines evidences extracted
from the retrieved documents and thus from the document collection (using PRF)
and other types of evidences, in our case collected from the descriptive part of the
topics (see Section 1.4.4 on TREC topics). We use several query difficulty predictors.
As developed in Chapter 3, each predictor focuses on a particular aspect of query
difficulty, therefore several prediction measures combined should offer a complete
and comprehensive characterization of a query. Some predictors are similar to
the one used in previous studies [He 2004], [Chen 2012], others considering the
importance of linguistic features [Mothe 2005]. The efficiency of this method is
analyzed in terms of learning accuracy, MAP and query expansion robustness (see
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the robustness index introduced in Section 1.3).
This chapter is organized as follows: in section 4.2, we review related work. Sec-

tion 4.3 overviews the selective QE method and presents the detailed query features
and the query classification. Section 4.4 describes the evaluation framework. We
present here the test collections, the retrieval parameters, the learning mechanism
configuration and the evaluation process. Results and discussion are presented in
Section 4.5. Section 4.6 concludes this chapter.

In the following section we present we the existing work in the field of selective
query expansion.

4.2 Related work on selective query expansion

Considering various systems or various system configurations to answer users’ needs
has first been investigated in the case of meta-search in which various system results
are fused to improve the ranked list of retrieved documents, either considering
reinforcement on system decisions like in Comb-like functions [Fox 1994] or in order
to favor diversity [Liu 2012, Santos 2010]. We employed re-ranking and Comb-like
functions in Chapter 2, in our query disambiguisation method. These data fusion
techniques however are based on the assumption that any query can be treated
the same way. As opposed to this, some approaches have investigated the use of
a query-dependent functions [He 2003], [Amati 2004b], [Cronen-Townsend 2004a],
[Wilkins 2006] [Lv 2009], [Chen 2012].

Many selective approaches make the assumption that difficult queries should be
treated differently from the others. Predicting query difficulty can be based on pre-
retrieval and post-retrieval predictors, as presented in Section 3.2. Many researchers
showed interest regarding this matter. In Section 3.2 we give details on difficulty
predictors and here we briefly recall them. The average Idf of query terms is one
simple pre-retrieval predictor: it measures the discriminative power of query terms.
On the other hand, the clarity score aims at quantifying the level of ambiguity of
a query and corresponds to the relative entropy between the query language model
and the document collection language model [Cronen-Townsend 2002b]. The Query
Scope [He 2004], measures the percentage of collection documents that contain at
least one of the query terms. The average number of query term senses and the
complexity of the query are other pre-retrieval predictors that are linguistics-based
[Mothe 2005]. The post-retrieval predictor weighted information gain [Zhou 2007]
measures the divergence between the average score of the top retrieved list and the
entire corpus. Yom-Tov et al. suggest a method based on the agreement between the
results from the full query and the ones obtained when sub-queries are considered
[Yom-Tov 2005]. Normalized query commitment [Shtok 2009] is a post-retrieval
predictor which measures the standard deviation for the scores of the retrieved
documents.

Selective QE has been studied as a possible application of query difficult pre-
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diction: the system decides whether QE should be applied or not, based on the
difficulty of the query.

In Amati et al. [Amati 2004b], the decision is based on InfoQ, an information
theoretic function that combines query length, idf, and other features. They show
that when considering a performing QE model, the selective approach can improve
MAP and optimize the number of queries with no relevant documents on the top 10.
The tests were conducted on 150 queries of TREC Robust and their corresponding
documents. They slightly improve the MAP, for example from a MAP of 0.2479
in the case of expansion for all queries, to a MAP of 0.2524 in the case of selective
QE.

Cronen-Townsend et al. [Cronen-Townsend 2004a] compare the language model
obtained from the retrieved documents using QE and using non expanded queries.
The term clarity score is used to classify queries in two groups: the ones which would
benefit from QE and the ones that would not. They tested the method over the
queries from TREC1 to TREC3 considered together, over TREC5, TREC6, TREC7
and TREC8. They also slightly improve the MAP compared to the baseline method
that expands all queries. For instance, on TREC8 they improved the MAP from
0.2715 to 0.2812.

Other approaches try to optimize QE or other function implied in the search
process for each query. Lv and Zhai [Lv 2009] suggest a learning method to predict
the coefficient that balances the initial query and the feedback information in PRF.
They use different features such as discrimination of a query (query length, query
entropy and query clarity), discrimination of feedback documents (feedback length,
entropy, clarity), and divergence between the query and feedback documents; logis-
tic regression is used to learn the balance coefficient. The authors show that the
three components are complementary and capture different aspects of information.
Moreover, the authors argue that the adaptive coefficient is more accurate than a
fixed coefficient when training and testing sets are not similar. The authors tested
over TREC6, TREC7 and TREC8 collection and they reported only marginal MAP
improvements (from 0.340 to 0.356 in the case of TREC7+8).

He and Ounis [He 2004] suggest a method to select among several term-weighting
models depending on the query. Queries are characterized by various features which
are used to cluster them using agglomerative hierarchical clustering. Training as-
sociates the best term-weighting schema with each query cluster. After training, a
new query is first clustered into the existing clusters and the pre-trained system is
used to process it. This is a pre-retrieval method since the query characteristics are
calculated from the query itself and from general characteristics of the document
collection (query length, term idf, and clarity/ambiguity of the query). When eval-
uated on Robust TREC, the method slightly improves MAP when using QE based
models if enough training queries are used.

Chen and al. [Chen 2012] also consider various features to predict performance
and apply selective QE. The authors use query features such as query length, query
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coherence, query entropy, as well as other features such as blind RF features (prob-
abilities associated with expanded terms) and explicit RF features (feedback docu-
ment length, entropy, rank, ...). The predictive model is based on logistic regression
that aims at predicting if blind RF will be better than combining explicit and blind
RF. The choise of the QE method is based on this prediction. Using ClueWeb09
(Category B), the precision of the prediction model is from 53% up to 65%. The
method improves MAP compared to any of the methods where a single QE method
is used.

Cao et al. [Cao 2008] propose a supervised method to decide whether expansion
term candidates are good or not according to their impact on retrieval. The process
is viewed as a term classification problem which is solved using SVM. We also employ
SVM in our approach, however the decision is different in our case, since we choose
between two QE methods and not among expansion terms.

In the method we propose, query difficulty predictors are used to cluster queries
and associate a QE model with the query clusters. Query difficulty predictors have
been used in the past to predict query difficulty, but no concrete application of the
prediction have been proposed apart from reducing long queries [Kumaran 2009].
The authors have developed a learning to rank method that uses query quality
measures as features for all the sub-sets of an original query. The original long
query is replaced by the sub-query chosen by the ranker.

Like in [He 2004] or [Chen 2012], we consider query features to make the query-
dependent decision on which function to use; however our predictors include some
linguistics-based predictors that have been shown to be correlated to query difficulty
[Mothe 2007]. Similar features and also the SVM learning mechanism have been
employed in [Lee 2014]. However, their application differs from ours since their
decision aims at choosing between inter-language and intra-language PRF in the
context of cross-language IR. In our method, we consider a selective function that
chose among various QE methods. More specifically, we consider RF and query
refinement. These two methods are user oriented.

When a user study is not possible because of missing resources and for repro-
ducibility reasons, it is possible to simulate them [Lin 2008], [Zhao 2012]. We thus
simulate these two types of QE. With regard to RF we use blind RF that con-
siders the first x retrieved documents as relevant. In addition, we simulate query
refinement by considering the descriptive part of the topics.

Zhao and Callan [Zhao 2012] use diagnosis of term mismatch in order to sug-
gest manual query reformulation or to guide other types of query expansion. Indeed,
many various query reformulation techniques have been developed in the literature
[Fox 1994]. Query reformulation can be manual or automatic, such as blind rele-
vance feedback [Cronen-Townsend 2002b] for example. However, evaluating man-
ually reformulated query face reproducibility; for this reason, it can be simulated.
Human behavior simulation has been used in the past in IR [Zhao 2012], [Lin 2008].

In the following section, we present our selective QE method based on learning
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with features based on query difficulty predictors.

4.3 SVM-based learning using query difficulty predic-
tors

In this section we present the proposed method and we develop on the query features,
by difficulty predictor types. Next, we describe the criterion for query classification
and the learning mechanism that we employ. We start by the method overview.

4.3.1 Method overview

Our method has as input TREC topics, from which we construct 4 query variants:
the initial query (title part of topic), the humanly refined query (title+description
together), the automatically expanded query (title expanded by PRF) and the
fully expanded query (title+description, all expanded by PRF). Having the query
variants, we compute the difficulty predictor values. From predictor results we
generate the feature data set. For each topic, we assign a class corresponding to the
best type of expansion. We then split the by the 10-fold cross-validation principle.
We use cross-validation to optimize the parameters of the learning method. The
model is then learned on the training data set folds and then tested. We finally
obtain the predicted class for each topic of the test data set.

We summarize the method in Algorithm 4.1.

Algorithm 4.1 Selective QE based on SVM with query difficulty prediction fea-
tures
Input: TREC topics, document collection

1: Generate query variants from topics1

2: Compute predictor values corresponding to generated queries.
3: Build the feature data set, based on predictor values and combinations.
4: Assign a class to each topic, corresponding to the AP of best expansion type.
5: Separate the data set in train/test (10 folds).
6: Optimize learning parameters by cross-validation.
7: Learn the model on train data.
8: Apply model on test data.

Output : Class value per topic, for test data.

Queries are characterized by features that are computed using the query text
and the retrieved document list; these features are derived from 4 query difficulty
predictors from the literature, which are presented in Section 3.3. They are effective
predictors of heterogeneous nature.

1For details regarding the query variants, see Section 4.4.1.
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4.3.2 Detailed query features

From these four core predictors, we have calculated a total of 31 features by adjust-
ing their parameters or by combining them.

Term ambiguity is represented by 6 features derived from the WNS predictor:
the maximum, average and sum for the number of senses, over query terms. The
features are calculated both for the initial query and the refined query.

Term discrimination is represented by features derived from the IDF pre-
dictor: the minimum, maximum, average, and sum over query terms. IDFs are
calculated both for the initial query and the refined query.

Document list homogeneity: query features are derived from the STD pre-
dictor. We consider the STD value for the list of documents retrieved from the
initial query and the refined query and their STD values difference.

Divergence between lists: query features are derived from the QF predictor
considering the various initial query and QE list combinaison and for 4 different
cutoffs (5, 10, 50, 100).

Pre/post-retrieval combinations provide 2 features: the product between
the WNS of the initial query and the STD difference as well as the IDF multiplied
by STD difference.

4.3.3 Query classification

The query classification aims at taking the decision between the fully expanded
(refined query + RF) and the RF expanded query variants. In the data set, a query
belongs to the class 0 if the Average Precision (AP) of the RF expanded query is
greater than the AP of the fully expanded query, otherwise the query belongs to
class 1. Learning is based on SVM, which is an adjustable learning method, well
fitted for binary classification.

The first stage uses cross-validation in order to automatically obtain the opti-
mal parameter values. After having the necessary parameters tuned, the learning
algorithm creates the model. A test query is associated with one class according
to its feature similarity to training queries and then the learned corresponding QE
model is applied. The method is evaluated in terms of MAP and robustness. We
use cross validation. For each collection, we consider 90% of the queries for training
and 10% for testing. We use the 10-folds cross-validation principle and we average
the performance over all folds.
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4.4 Evaluation framework

4.4.1 Test collections and retrieval parameters

We evaluate our method on three collections from TREC (Text REtrieval Confer-
ence)2 ad hoc tasks: Robust, WT10G and GOV2. For details on the test collections,
see Section 1.4.3.

We employ the 250 topics of Robust, the 100 topics of WT10G and the 150
topics of GOV2. Regarding the query formulation, we have chosen the title part of
the topic to stand for the initial short query and, by adding up the description part
we simulate the humanly generated expanded query. We do not use the narrative
part of a topic in our evaluation framework.

Our selective approach implements two QE methods, while the search engine
remains unchanged. The used search engine represents a key factor for several stages
of our method and its retrieval parameters have a crucial influence over the outcome
of the selective IR approach. For instance, the post-retrieval predictors obtain their
values through computations made over the list of retrieved documents returned by
a search engine. Moreover, the runs for performance evaluations are also produced
through a search engine, hence the importance of the search engine’s choice. The
present study is based on runs constructed by Indri.The retrieved document lists
consist of the first 1000 ranked documents returned by Indri.

The collections were indexed, considering stopwords removal and using the
Krovetz stemmer. For the basic retrieval we used the query likelihood model (QL)
with a Dirichlet smoothing (µ = 1000). To expand the queries we used the Rele-
vance Model 3 (RM3) [Lavrenko 2001], which represents an interpolation between
the blind relevance feedback (RM1) and the initial query. Choosing the parameter
for this interpolation represents an open problem. We have set this parameter to
0.5 assuming an equal importance of the initial query and the automatic expansion.
Moreover, fixing this parameter value implies a robust baseline (Robustness Index
greater than 0.56). The number of documents for feedback is set to 100 and the
number of terms for feedback is set as well to 100.

Four query variants contribute to the method to provide learning features:

1. the initial short query (denoted T) is generated from the title part of the
TREC topic after the suppression of stopwords and a stemming process;

2. the humanly refined query (denoted TD) is simulated by considering the
descriptive part of topics and consists of the title along with the descriptive
of TREC topic, having stopwords removed and the terms stemmed;

3. the automatically expanded initial query using blind RF and denoted TRF,
which is T expanded by the search engine expansion mode, and

2http://mitpress.mit.edu/books/trec
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4. the fully expanded query that combines the two last QE denoted TDRF: TD
expanded by the search engine expansion model.

We have tried several configurations of Terrier’s parameters. Corresponding to each
collection, we have chosen the settings which produced the highest MAP. These
MAP values are consistent with the literature [He 2004], [Zhong 2012] and they
also represent baselines to evaluate the efficiency of our selective approach.

Table 4.1 provides the MAP for each individual runs.

Table 4.1: The baseline MAP values, for each collection

Collection MAP T MAP TD MAP TRF MAP TDRF
Robust 0.233 0.260 0.260 0.296
WT10G 0.194 0.215 0.220 0.244
GOV2 0.292 0.294 0.332 0.329

4.4.2 SVM configuration

As mentioned in Section 4.3.2, the feature matrix for the SVM model contains the
values of features based on query difficulty predictors variants and combinations.
The data set contains 31 features in total. From the retained predictors (WNS,
IDF, STD and QF), we have derived different variants and combinations. See
Section 3.3 for details on the retained predictors. Our full feature list is presented
in Table 4.2.

Table 4.2: The learning feature list based on query difficuly predictors

WNS IDF STD

max WNS for T
average WNS for T
sum WNS for T
max WNS for TD
average WNS for TD
sum WNS for TD,

max IDF for T
min IDF for T
average IDF for T
sum IDF for T
max IDF for TD
min IDF for TD
average IDF for TD
sum IDF for TD

STD for T
STD for TD
(STD T)-(STD TD)

QF Combinations
QF for T and TD
QF for T and TRF
QF for TD and TDRF
(each QF with cutoffs: 5, 10, 50, 100)

(average WNS for T)*(difference STD)
(average IDF for T)*(difference STD)
WNS-c, with c∈ {1, 1.5, 2, 2.5}

For the STD, there were considered as well the STD for the T run and the
STD of the TD run, each of them as a standalone feature.

The QF predictor has multiple variants generated by the existence of two pa-
rameters. The cut-off level for the result lists represents the number of documents
from the top result lists that are considered for the overlapping. We have chosen a
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various number of cut-off levels between 5 and 200. The second parameter is the
choice of which results lists are overlapped, for example the results from the T run
with the results from the TRF run.

Regarding the predictor combinations, we have proposed IDF ∗STD_diff (the
difference between the STD of the T run and the STD of the TD run), WNS ∗
STD_diff and WNS−c, where c represents a threshold for the permitted amiguity
level and c ∈ {1, 1.5, 2, 2.5}.

When creating the feature matrix on the training set, the class per query was
established with respect to the AP value for the TRF and TDRF expanded versions:
0 if the AP of the TRF version is greater than the AP of the TDRF version and 1,
otherwise.

Regarding the SVM kernels [Aizerman 1964], we have tried several possibilities,
such as Gaussian (Radial basis function), sigmoid and polynomial (up to third
degree). The usage of a non linear kernel allows the algorithm to fit the maximum-
margin hyperplane in a transformed feature space. The mathematical equations for
the various kernels k are listed in Table 4.3.

Table 4.3: The mathematical expression for several SVM kernels

SVM kernel Formula
Gaussian k(x, x′) = e−γ||x−x′||2

Polynomial k(x, x′) = (γxT x)d

Sigmoid k(x, x′) = tanh(γxT x)

The representation of the query in the feature space is denoted by x, d repre-
sents the polynomial degree, and γ is an adjustable parameter. Another adjustable
parameter is the cost, which represents the cost of constraint violation. For the
values of cost and γ parameters, we have used an automatic sampling method of
10-fold cross validation. The best values obtained are the following: γ = 0.015625
and cost = 4. These values remain stable for all the different learning trials.

4.4.3 Evaluation method

For each collection, we use 10 fold cross validation to check the accuracy of the
learnt model. We use 90% of the queries for training and the rest for tests. The
accuracy measure represents the average accuracy over the 10 testing folds.

Regarding the decision, for the testing queries, with respect to the classification
established by the SVM, one type of QE (TRF or TDRF) is assigned for each query.
The classified query group is submitted to the search engine. The retrieval results
(retrieved document lists) represent new evaluation runs and these new runs are
evaluated, by computing the MAP. Then, the results are compared to baselines, in
terms of MAP, in order to measure the improvements.

QE has always involved a matter of robustness. In average, the expansion im-
proves the performances, only that the performance of some queries might decrease
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in terms of AP. We introduced the Robustness Index (RI) [Sakai 2005] in Section 1.3.
We recall its definition here:

RI(q) = n+ − n−
|q|

, (4.1)

where q is the set of queries over the RI has to be calculated, n+ is the number
of improved queries, n− the number of degraded queries and |q| the total number
of queries. For our method, we have computed the RI and we have compared this
robustness measures with the RI of runs without the selective premise, in order to
obtain the improvement percentage.

The obtained results and comments are presented in the following subsection.

4.5 Results and discussion

In this section we present the performance of our method in terms of SVM accuracy,
MAP improvements and robustness, along with result comments, arguments and
observations.

As Guyon and Elisseeff stated in [Guyon 2003], redundant data could be helpful
for obtaining a more accurate learning model. We have tested this hypothesis and,
indeed, a dataset with a smaller number of features has performed worse.

Regarding the SVM kernels, we have tested several kernel types as presented
in section 4.4.2. The Gaussian kernel has performed clearly and constantly better
than all the other kernels. For instance, the failure of the linear kernel suggests
that there is no linear separation with respect to the two query classes for the query
representations in the feature space. We present here the results obtained by using
the Gaussian kernel, since it yielded the best learning performance.

Table 4.4 presents the MAP improvements, with respect to non selective re-
trieval, for test queries in the 3 collections, the p-value for the statistically signifi-
cance test (t-test) and the model accuracy are also displayed.

Table 4.4: The improvements in terms of MAP (*: p-value< 0.05; **: p-value< 0.001)

Robust WT10G GOV2
Baseline TRF 0.265 0.234 0.331
Baseline TDRF 0.305 0.264 0.334
Result with decision 0.317 0.296 0.372
Improvement TRF 19.41%∗∗ 24.65%∗∗ 12.59%∗∗

Improvement TDRF 3.90%∗∗ 12.27%∗∗ 11.35%∗∗

SVM accuracy 97.20% 100% 100%
Collins-Thompson: Baseline Expansion 0.244 0.183 0.291
Collins-Thompson: Result (Robust Feedback) 0.245 0.199 0.300
Collins-Thompson: Improvement 0.40% 8.73% 3.09%

The improvement range is between 3.90% and 24.65% for the presented test
examples and all the results are statistically significant. He and Ounis [He 2007]
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report MAP improvements up to 10.83% for WT10G and up to 7.40% for GOV2,
using their combining fields method for adaptive query expansion. The selective
method proposed by Lv and Zhai [Lv 2009] improve MAP with about 4%. Collins-
Thompson [Collins-Thompson 2009] formulates query expansion as a robust opti-
mization problem and his method aims to reduce the risk-reward trade-off of ex-
pansion. His baselines and obtained results are presented in 4.4. The highest MAP
improvement with respect to the baseline RF expansion is of 8.73%, for WT10G. It
is worth mentioning that his RF baseline was lower.

Selective QE is beneficial in average, however some queries might lose perfor-
mance, in terms of AP. For this reason, a robustness study should be involved.
Therefore, we have computed the robustness improvement in terms of RI. We
have compared our QE decision to the constant decision for TRF expansion and
to the constant decision for TDRF expansion, respectively. The results are dis-
played in Table 4.5 together with the RI values obtained by Collins-Thompson
[Collins-Thompson 2009].

Table 4.5: The robustness analysis (*: p-value< 0.05; **: p-value< 0.001)

Robust WT10G GOV2
RI(TRF) 0.384 0.200 0.413
RI(TDRF) 0.576 0.360 0.187
RI(SVM) 0.752 0.620 0.653
Collins-Thompson: RI 0.377 0.270 0.262
Improv. RI(TRF) 95.83%∗∗ 210%∗∗ 58.07%∗∗

Improv. RI(TDRF) 30.56%∗∗ 72.22%∗∗ 250%∗∗

The baselines for the RI are consistent with the literature [Collins-Thompson 2007]
and the RI improvement starts from 30% and goes up to 250%, this means that the
selective IR method is also helpful in terms of robustness.

4.6 Conclusion

We have proposed a selective IR method that utilizes query difficulty predictors
in order to learn how to select between several types of query expansion. Our
method takes advantage of a large range of query features, including linguistics-
based ones. The method focuses on the query, while other selective IR methods
from the literature deal with the collection documents, or with the search engine
types.

The method is effective in terms of learning accuracy, MAP and RI. We have ob-
tained a learning accuracy constantly over 80%, MAP improvements up to 24.65%
in average and robustness improvements that reach 250%, results that are statisti-
cally significant.

The query difficulty prediction research obtains more and more efficient and
accurate measures, although these predictors are not enough exploited and utilized
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in IR systems. We consider that the selective IR represents a realistic and fruitful
framework for query difficulty prediction applications.

Regarding future works, we are interested in building up new difficulty predictors
along with new possible predictor combinations. The SVM has represented a choice
for the learning mechanism and we aim to test other learning techniques such as
decision trees. Also the pre/post retrieval similarity analysis opens another lead for
query-focused selective IR.
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Query expansion improvements are usually reported on average, over multiple
queries, meaning that some queries may actually be harmed (see Section 1.3). For
this reason, it is useful to find out how to expand each query. In this context, in
Chapter 4 we proposed a per query method to choose between two expansion types,
by learning based on difficulty predictors.

In this chapter we remain in the field of query expansion and we present our
trial to optimize the interpolation parameter (lambda) in the case of RM3 query
expansion model (see Section 1.3), on a per query basis. This parameter varies the
importance of the initial query in the expanded model. It is a difficult problem
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[Lv 2009] and we believe that it might not be solvable without prior information.
We test several hypothesis, both with and without prior information, and we also
try to establish the minimum amount of necessary information in order to be able to
optimize the expansion parameter. We employ linear regression, SVM, pseudo-qrels,
Jensen-Shannon divergence and logistic regression to test our hypothesis. Some im-
provements with respect to baselines are noticeable. However, these improvements
are not important enough to declare the problem as solved.

This research has been conducted not only during a three months research mobil-
ity at Technion Institute from Haifa, Israel, in 2013, but also afterwards, by keeping
a close contact with the team from Technion. In Haifa we have worked with Prof.
Oren Kurland and with PhD. candidate Anna Shtok.

5.1 Introduction

Nowadays, the efficiency of QE based on pseudo-relevance feedback (PRF) is widely
acknowledged by the IR community. Following this principle, the initial query
is submitted to the search engine yielding the retrieved document list. Next, by
analyzing this list, expansion terms are found and then used to expand the initial
query. The expanded query is finally submitted to the search engine in order to
obtain a new, supposedly improved, retrieved document list.

This type of approach, which basically dates back since about 20 years ago
[Buckley 1995], extends the idea of query reformulation based on explicit relevance
judgements from users [Rocchio 1971, Harman 1992]. Various studies have under-
lined the benefits brought by PRF. However, He and Ounis have shown that there
is no significant difference in terms of performance between the results obtained by
injecting relevance through all the first 10 initially retrieved documents and only
the truly relevant documents among these first 10 retrieved documents [He 2009].
In the case of language models, which also is our interest here, [Lavrenko 2001]
have reported improvements between 2 and 5% in terms of precision when 10 ini-
tially retrieved documents are considered as relevant, over TREC collections. On
the other hand, [Deveaud 2013] propose the employment of external resources in
order to obtain the expansion terms. Based on language model, this approach in-
terrogates Wikipedia or the web and the first results are considered as expansion
documents. He shows that this method improves results, moreover when multiple
external sources are combined.

It is very important to mention that the expansion improvements are global,
meaning that the query expansion is beneficial on average, over all the queries from
a dataset. Thus, several queries are improved in this way, while other queries are
harmed in terms of performance [Harman 2009], [Bigot 2011]. Therefore, various
researchers are interested in adapted query reformulation. We also proposed a con-
tribution for selective QE, based on learning with features based on query difficulty
predictors (see Chapter 4). This selective way of expanding queries consists, thus,
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in deciding how, or whether to expand the initial query. The decision lies generally
on features extracted from the queries themselves. In [Amati 2004a], the authors
combine various query features, such as query length, the terms idf , aiming to de-
cide if the expansion should be applied. They showed that the precision could be
improved this way and also that few queries did not have any relevant documents
among the 10 top retrieved documents.

In this query expansion optimization context, we focus our research on optimiz-
ing a parameter from a language model based query expansion, on a per query basis.
The purpose is to improve the AP value for each query, this implying a more robust
retrieval system (see the robustness index from Section 1.3). We believe that this
parameter should be optimized for each query and not for an entire system, that is
over all queries. The Query Likelihood (QL) is employed for retrieval in the case
of the initial query, while Relevance Model 1 (RM1) considers the query formed
by the expansion terms. The model we try to optimize is called Relevance Model
3 (RM3) and represents an interpolation between QL and RM1. All these models
are described in Section 1.2.4. We only restate here few details that will be useful
in this chapter.

The IR language models assume that each document is generated from a different
model [Ponte 1998].

A relevance model could be defined as a model which is representative for rel-
evant documents. In [Lavrenko 2001], the authors define a relevance model as a
model that determines the probability of observing a word in the documents that are
relevant to a query.

We are trying to optimize the Relevance Model 3 (RM3) [Abdul-Jaleel 2004],
which is the Relevance Model 1 (RM1) [Lavrenko 2001] interpolated with the model
of the initial query, in order to obtain performance improvements. Thus, the inter-
polated relevance model RM3 is computed as follows:

PRM3
(
t|θ′

q

)
= (1 − λ)P (t|θq) + λPRM1 (t|q) (5.1)

The central figure of our analysis is the lambda parameter from RM3, parameter
which we try to optimize for each query in order to obtain a better AP performance.
This interpolation parameter can have real values, between 0 and 1. When the value
is set to 0, this means that the RM1 has all the importance. Contrarily, when the
value is set to 1, QL has all the importance.

This chapter is structured as follows: in Section 5.2 we present the research re-
lated work. The evaluation framework is described in Section 5.3. The optimization
hypothesis without prior information are presented and tested in Section 5.4, while
the hypothesis with prior information are presented and tested in Section 5.5. In
Section 5.6 we share some additional insights regarding the optimization problem.
Section 5.7 concludes this chapter.
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5.2 Related work

The robustness issue that query expansion is raising when degrading some queries,
while improving others has driven IR researchers to find ways to learn how and
if to expand the queries. Most of the approaches for optimizing query expansion
performance are presented in Section 4.2. We revisit here only the approaches that
try to optimize the query expansion based on pseudo-relevance feedback, in the case
of relevance models. Only one approach is close to our propositions [Lv 2009].

From the selective query expansion perspective, in [Cronen-Townsend 2004b],
the authors proposed a framework with three methods. The idea is to use the
expanded queries only when they are straying from the initial ones, therefore it
represents a selective query expansion approach in the sense of choosing whether
to expand a query or not. The framework consisted in three methods to make
the expansion decision. The first is the clarity score [Cronen-Townsend 2002b] and
the hypothesis is that if the clarity score is high, then expansion would be unwise
to make. The second approach is based on the overlap between the unexpanded
and expanded ranked list, as in the case of QF difficulty predictor [Zhou 2007].
A high value of the overlap score would suggest a beneficial expansion. Finally,
the third and the best method is the model comparison. The main idea is to
compare the language models of the unexpanded and expanded retrieval results.
From this comparison they try to predict when the expanded query drifted from
the original query sense. The authors employed the language model retrieval and
expansion techniques implemented in Indri over the AP88-90, TREC123, TREC5,
TREC6, TREC7, TREC8 and Query Track Aggregate test collections. Some small
Mean Average Precision (MAP) improvements were reported, only for TREC5 and
TREC6 collections, respectively (from 0.1609 to 0.1644 and from 0.2013 to 0.2115).

Collins-Thomson and Callan [Collins-Thompson 2007] aim to estimate and to
use the uncertainty in the pseudo-relevance feedback. They resample the top re-
trieved documents of a query in order to estimate a posterior feedback model dis-
tribution. Their meta-feedback algorithm uses query variants, with the assumption
that various aspects of the original query might be important. These query variants
consist in: using the original query, leaving one term out, or keeping a single term
from the query. We also employ query variants to compute features based on query
difficulty predictors. These features are required for the application of several hy-
pothesis stated in Section 5.4. Finally, the enhanced feedback models from multiple
query variants are combined. Indri was used as a search engine and Indri query
language was employed to generate query variants. The authors conducted experi-
ments over the TREC1&2, TREC7, TREC8 and WT10G collections and reported
improvements in terms of MAP and RI. For instance, in the case of the TREC8
collection the MAP values go from 0.1829 (baseline represented by feedback without
re-sampling) to 0.1946.

Seeing the query expansion as a risk-reward optimization, Collins-Thompson
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[Collins-Thompson 2009] proposed a robust constrained optimization approach. This
selective query expansion method models the expansion benefit and risk, by opti-
mizing over uncertainty sets from data. The authors tested their method over
several TREC collections, such as TREC1&2, TREC7, TREC8, WT10G, Robust
and GOV2. The evaluation measures were MAP, precision at a cutoff of 20 (P@20)
and robustness index (RI). We mention that the search engine, as in our study,
was Indri and the query expansion model was RM3. Their baselines represent the
retrieval results without query expansion and the retrieval results with query expan-
sion for all queries. The reported improvements are quite close to the baseline with
query expansion, both in terms of MAP and RI. The highest MAP improvement
was for WT10G, from 0.1830 to 0.1990, while the highest RI improvement was from
-0.0270 to 0.2703.

The approach which is the closest to our objective is presented in [Lv 2009]. The
authors proposed a method to adapt the relevance feedback. The aim is to optimize
the balance parameter (the lambda interpolation parameter from RM3) for each
query and for each set of feedback documents. By the means of logistic regression
with various models with their corresponding features the adaptive mechanism is
tested over TREC6, TREC7 and TREC8 collections. Query features are based on
the query length, on query entropy and on query clarity, while feedback documents
features are based on feedback length, feedback radius, on entropy of feedback
documents and on clarity of feedback documents. Also the divergence between
query and feedback documents is taken into account through the absolute and
relative divergence, respectively. However, the MAP improvements are statistically
significant only for the training set of TREC6 and TREC7 together (from 0.340
to 0.356) and for TREC6, TREC7 and TREC8 all together (from 0.340 to 0.354),
respectively.

For the logistic regression, the authors employed features without any prior
information about the retrieved lists quality for the logistic regression. Since the
improvements are not satisfying enough, we tried to check the necessary amount of
information required for a better parameter prediction.

In the following section we introduce the evaluation framework established to
test the optimization hypothesis.

5.3 Evaluation framework

In this section we establish the evaluation framework, thus we present the bench-
mark collections employed for tests, we define the baselines and also we mention
the parameter setup for the retrieval system we used in our experiments.
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5.3.1 Data collections

The main data sets are TREC Robust, WT10G and GOV2 (see Section 1.4.3 for
details). However, for initial, small scale experiments, we used in a complementary
way the TREC123 and TREC5 collections.

TREC Robust, WT10G and GOV2 are described in Section 1.4.3. On the other
hand, TREC123 is a benchmark which consists in 100 topics addressed to Disks 1,
2 and 3 from TREC ad hoc. TREC5 ad hoc collection has 50 topics (251 - 300)
and documents from Disks 2 and 4 of TREC disks.

5.3.2 Baselines

In order to check the performance of our results, we established two baseline configu-
rations. The first baseline is a strong one and represents the AP per query, obtained
with the best lambda for that particular query. This represent the optimal system
and we try to reach as close as possible to its performance. The second baseline is
weaker and represents the AP values per query, obtained this time with the lambda
value that yields the best results on average, across all the queries. This baseline
that fixes a best lambda across all the queries should normally be surpassed by
the results when predicting the lambda parameter on a per query basis. We also
compare the results to performances of QL and RM1, respectively.

5.3.3 Retrieval parameters

The search engine used for experiments in this chapter is Indri (see Section 1.4.6.2).
Firstly, the collections have been indexed by Indri. The stopwords have been

removed and we used the Krovetz stemmer to stem the terms.
Having the indexes, we submit the queries to the search engine in order for it to

retrieve the documents supposedly relevant. The queries consist in the title part of
the TREC topics. We considered 11 runs per collection: the RM1 (the equivalent
of RM3 with λ = 1), the QL (the equivalent of RM3 with λ = 0) and 9 more runs
corresponding to lambda values from 0.1 to 0.9, with a step of 0.1.

For the basic QL retrieval we opted for the Dirichlet smoothing with µ = 1000.
The top retrieved documents by QL are used as feedback documents for RM1 and
RM3.

For the RM1 and RM3 models we have tested various parameter combinations
regarding the number of feedback documents and feedback terms and since the val-
ues were collection dependant, we decided to keep 100 feedback documents and 100
feedback terms. The smoothing method stands in place, that is Dirichlet smoothing
with µ = 1000.

In the following sections we present the optimization proposals regarding the
lambda parameter, in the case of query expansion by the means of RM3. Firstly, we
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try to predict the lambda value without any prior information regarding the quality
of the initially retrieved list QL and of the RM1 retrieved list, which are interpolated
in order to obtain RM3. Secondly, we try to find the minimum amount of necessary
information to predict the lambda parameter, since the hypothesis without prior
information seem to fail.

5.4 Optimization hypothesis without prior information

As hypothesis without prior information on the quality of the retrieved lists, we
firstly employ regression and SVM based on query difficulty prediction features
and then we use pseudo-qrels in order to estimate the quality of various lambda
configurations aiming to decide which one is better.

5.4.1 Linear regression and SVM with query difficulty prediction
features

We underlined the capabilities of query difficulty prediction features for selective
IR, in Chapter 4. Thus, we also test two learning techniques with the purpose of
predicting the quality of retrieved document lists. These two techniques are linear
regression and SVM, respectively.

The learning hypothesis was tested using various feature configurations. The
features are based on query difficulty predictors, as in Chapter 4. We consider both
pre-retrieval and post-retrieval predictors in our feature models.

Regarding the pre-retrieval predictors we employed the following predictors:
the maximum of collection query similarity (MaxSCQTFIDF) and maximum term
weight variability (MaxVARTFIDF), both derived from [Zhao 2008], together with
the maximum IDF value.

For the post post-retrieval predictors we considered the following: WIG from
[Zhou 2007], we computed the NQC from [Shtok 2009] by normalizing the STD
predictor with respect to the entire collection score, the QF predictor and the
geometric mean, the minimum value, the maximum value, the entropy and the
average of the retrieved documents scores. In addition, for some experiments we
also took into account a mutation of QF, which computes the overlap of multiple
retrieved document lists. However, the difference in terms of results after adding
these feature was not significant. Tests showed that even though the multiple lists
QF is the best feature for some collection, the final results are not significantly
improved.

We also try different feature combinations and configurations, such as separat-
ing pre-retrieval from post-retrieval predictors, different normalization applied over
several features, feature selection, or different feature variations stemming from the
same predictor (mean, min, max, etc.).
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The first investigations, realized both with regression and with SVM, regard
two retrieved document lists QL and RM3, with a fixed λ = 0.5. The regression
method should predict the AP of the best query variant (QL or RM3), while the
SVM binary classification should choose the best query variant itself, also between
QL and RM3.

The actual lambda parameter optimization is done in other experiments, by
multiclass SVM. There are two class separation hypothesis, one with three classes
corresponding to lambda values in intervals (0.1-0.3, 0.3-0.6 and 0.7-0.9) and one
with 9 classes, each class corresponding to a lambda value from 0.1 to 0.9, incre-
mented with a step of 0.1. The value of λ = 0 and λ = 1 correspond to RM1 and
QL, respectively.

For the result presentation, we mention the correlation between the AP pre-
dicted by regression and the true value of the best AP per query. We also present
the SVM accuracy over the test dataset and the train dataset, as well as the best
features for every considered scenario.

As a preliminary analysis, we check the predictor correlations between the AP
of QL, RM1 and RM3 (with fixed λ = 0.5) and the predictor values, for Robust and
WT10G collections. Results for the Pearson’s correlation coefficient are displayed
in Table 5.1.

We notice that there are predictors which are very weakly correlated with AP
of no matter which list, such as WIG, with values starting from 0.03 in absolute
value. On the other hand, NQC is highly correlated, having Pearson’s coefficient
up to 0.58. Variation in terms of correlation are to be noticed when checking across
collections. In this case, for WIG, we can obtain correlations of -0.18 for Robust,
while for WT10G the correlation coefficient has the value of 0.08. Moreover, several
predictors yield a negative correlation, for example GeoMeanLog.

We firstly discuss the proposed regression method which tries to predict the best
AP value per query. The choice is between the AP of QL and RM3 with fixed λ =
0.5, respectively. This is inspired by the selective query expansion (see Chapter 4)
and we test this three choices in order to have some first insights regarding the
discriminant power of the features, reflected in learning results. However, before
obtaining the prediction results we should analyze the features and their impact on
the model.

Having many features of heterogeneous nature may raise the question of which
of these features are the best in terms of their importance in the prediction model.
Therefore, we look at the regression weights of our features and we highlight. We
tried three regression models per collection, each corresponding to predicting the
AP of QL, RM1 and RM3, respectively. The highlights are shown in Table 5.2.
We highlight and we write in bold the ten best features per prediction model, in
absolute value, since a high negative value is also discriminant therefore important
for the model. We notice that while some predictors never manage to be in the top
10 features (WIG), or they are in top only for one model (Min), other features are
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Table 5.1: Individual predictor correlation with AP, for Robust and WT10G

Predictors Robust WT10G
QL RM1 RM3 QL RM1 RM3

wigQL/WIG10 0.53 0.36 0.43 0.37 0.18 0.22
wigQL/WIG50 0.41 0.27 0.32 0.27 0.12 0.14
wigQL/WIG100 0.34 0.21 0.26 0.21 0.08 0.09
wigRM1_exp/WIG10 -0.18 -0.12 -0.16 -0.04 0.03 0.08
wigRM1_exp/WIG50 -0.33 -0.26 -0.30 0.06 0.13 0.18
wigRM1_exp/WIG100 -0.37 -0.30 -0.34 0.10 0.16 0.21
wigRM3/WIG10 0.14 0.05 0.11 0.21 0.10 0.06
wigRM3/WIG50 0.33 0.22 0.30 -0.09 0.00 0.05
wigRM3/WIG100 0.38 0.28 0.35 -0.03 0.05 0.11
QL_RM1/QF5 0.26 0.26 0.24 0.31 0.23 0.18
QL_RM1/QF10 0.32 0.36 0.31 0.37 0.31 0.27
QL_RM1/QF50 0.26 0.29 0.22 0.50 0.42 0.37
QL_RM3/QF5 0.28 0.24 0.24 0.34 0.18 0.18
QL_RM3/QF10 0.29 0.26 0.25 0.30 0.14 0.14
QL_RM3/QF50 0.24 0.24 0.19 0.40 0.30 0.27
RM1_RM3/QF5 0.04 0.16 0.08 0.14 0.18 0.10
RM1_RM3/QF10 0.14 0.21 0.16 0.31 0.35 0.30
RM1_RM3/QF100 0.16 0.19 0.15 0.34 0.30 0.23
QL/NQC50 0.53 0.42 0.48 0.43 0.26 0.30
QL/NQC100 0.54 0.44 0.49 0.49 0.33 0.36
QL/NQC500 0.39 0.32 0.32 0.36 0.22 0.23
RM1/NQC50 0.47 0.45 0.46 0.30 0.29 0.30
RM1/NQC100 0.48 0.49 0.48 0.32 0.28 0.29
RM1/NQC500 0.37 0.39 0.36 0.29 0.19 0.20
RM3/NQC50 0.55 0.51 0.54 0.27 0.20 0.23
RM3/NQC100 0.58 0.57 0.58 0.36 0.29 0.31
RM3/NQC500 0.43 0.44 0.41 0.26 0.14 0.16
QL_RM1_RM3/QF10 0.32 0.36 0.31 0.37 0.31 0.27
QL_RM1_RM3/QF50 0.26 0.29 0.22 0.50 0.42 0.37
QL_RM1_RM3/QF100 0.18 0.21 0.14 0.42 0.33 0.29
pre/MaxIDF 0.45 0.28 0.36 0.22 0.11 0.16
pre/MaxSCQTFIDF 0.36 0.31 0.29 0.44 0.30 0.38
pre/MaxVarTFIDF 0.44 0.28 0.33 0.46 0.31 0.38
q_rep/Entropy 0.30 0.26 0.24 0.24 0.14 0.14
q_rep/GeoMean 0.40 0.35 0.33 0.30 0.19 0.17
q_rep/Max 0.36 0.29 0.28 0.22 0.11 0.10
q_rep/Min 0.35 0.30 0.30 0.29 0.19 0.17
q_rep/GeoMeanLog -0.37 -0.35 -0.32 -0.33 -0.19 -0.16
q_rep/Mean 0.41 0.35 0.33 0.28 0.17 0.15

in top almost for every model and collection (QF100).
The train/test splits have been created by 10-fold cross-validation, and the pre-

sented results are the average results of all 10-fold results.
Regarding the feature selection, we selected at first the 6 best features, based

on their weights in Table 5.2. In Table 5.3 we compare the regression results when
considering 6 features and the results when considering all the features. The corre-
lation is higher than all the predictors taken individually, but still not high enough
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Table 5.2: Linear regression feature weights, for Robust and WT10G collections

Robust WT10GPredictors QL AP RM1 AP RM3 AP QL AP RM1 AP RM3 AP
wigQL/WIG10 6.34 -2.70 2.65 0.44 -0.06 0.37
wigQL/WIG50 1.95 -2.13 1.24 -0.07 -0.38 0.05
wigQL/WIG100 3.70 -1.93 0.77 -0.39 -0.74 -0.29
wigRM1_exp/WIG10 -0.67 -4.85 -1.48 1.34 0.89 1.39
wigRM1_exp/WIG50 0.22 -3.03 -2.22 1.76 1.87 2.06
wigRM1_exp/WIG100 -0.93 -4.66 -4.14 1.76 1.93 2.16
wigRM3/WIG10 -1.86 -6.19 -4.77 0.79 0.60 0.58
wigRM3/WIG50 3.17 -0.03 1.36 2.25 2.46 2.49
wigRM3/WIG100 4.25 2.07 3.69 2.48 3.20 3.24
QL_RM1/QF5 -7.01 -6.96 -7.34 1.14 0.40 0.48
QL_RM1/QF10 8.41 10.37 8.82 0.18 0.16 0.04
QL_RM1/QF50 5.13 7.31 3.86 2.34 3.95 3.71
QL_RM3/QF5 6.75 6.86 5.52 1.59 0.55 1.02
QL_RM3/QF10 7.01 3.02 4.58 0.33 -1.28 -1.33
QL_RM3/QF50 -3.34 -5.96 -2.60 0.89 0.81 0.41
RM1_RM3/QF5 -6.14 2.04 1.58 -1.17 -0.61 -0.65
RM1_RM3/QF10 1.32 2.44 3.10 0.67 1.43 1.51
RM1_RM3/QF100 5.04 9.33 11.72 2.35 2.44 2.77
QL/NQC50 15.45 12.73 17.18 2.54 1.37 1.75
QL/NQC100 0.65 2.07 5.98 2.39 1.97 2.35
QL/NQC500 -13.02 -5.57 -6.45 -0.71 -0.32 -0.47
RM1/NQC50 1.13 0.57 3.42 0.19 1.04 0.95
RM1/NQC100 6.94 8.36 9.76 -0.48 0.21 0.40
RM1/NQC500 1.21 -2.88 -4.17 0.28 0.32 0.70
RM3/NQC50 8.69 14.83 14.83 -0.09 -0.03 0.01
RM3/NQC100 12.86 20.20 20.87 -0.10 0.68 0.78
RM3/NQC500 -1.54 3.37 -0.32 -0.02 -1.14 -1.48
QL_RM1_RM3/QF10 7.75 10.38 8.83 0.18 0.16 0.04
QL_RM1_RM3/QF50 5.14 7.57 3.97 2.34 3.95 3.71
QL_RM1_RM3/QF100 5.24 3.66 4.14 2.65 2.97 2.92
pre/MaxIDF 16.40 11.06 12.45 0.71 1.32 1.44
pre/MaxSCQTFIDF 1.04 5.59 3.24 1.25 1.17 1.69
pre/MaxVarTFIDF 11.41 -1.49 1.01 1.75 2.36 2.46
q_rep/Entropy -5.99 1.78 -5.40 1.66 1.16 1.08
q_rep/GeoMean 3.58 6.93 3.90 -0.32 -1.03 -0.94
q_rep/Max 4.72 -4.15 -1.34 -1.89 -0.96 -0.72
q_rep/Min 1.78 0.28 0.40 1.19 1.22 1.09
q_rep/GeoMeanLog -0.63 -4.68 -2.81 0.23 0.88 0.78
q_rep/Mean 4.34 -0.66 -0.15 -1.28 -1.23 -1.25

to be able to state an accurate and clear prediction. In the case of 6 features the
test performance is closer to the train performance than when considering all the
features. On the other hand, when considering all the features, the trained model is
better, however the test performance slightly decreases. This suggest over-fitting.

For the SVM, we used svmlight [Joachims 1999] and we kept the same feature
setup as for the regression. In Table 5.4 we present the SVM accuracy for test/train
splits, over Robust and WT10G, while using 6 features and all features, respectively.
We mention that the train accuracy represents only an indication for possible over-
fitting and it does not represent a reliable estimator of the real accuracy rate. The
accuracy is not high, classification results being close to chance, in some cases
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Table 5.3: Correlation values in the case of regression, for different number of features, for train
and test sets, over Robust and WT10G collections

# of features
Average (standard deviation)

Robust WT10G
Train Test Train Test

6 features 0.663 (0.017) 0.635 (0.150) 0.641 (0.023) 0.526 (0.281)
All features 0.671 (0.013) 0.593 (0.210) 0.632 (0.028) 0.587 (0.163)

havinèg worse performance than chance. For instance, the test splits accuracy for
the WT10G collection is 45.429% with 6 features and 48.571% for all the features.
However, by observing the created classes, one could notice that the classifier tends
to assign all the queries to the first class. Close values between train and test also
suggest that there is no over-fitting involved.

Table 5.4: SVM accuracy, for different number of features, for train and test sets, over Robust
and WT10G collections

# of features
Accuracy

Robust WT10G
Train Test Train Test

6 features 64.259% 64.283% 54.462% 45.429%
All features 64.257% 64.250% 56.596% 48.571%

Empirically following an exploring trial/error experimental process, we also tried
kernel methods for SVM, such as the Gaussian kernel. On the other hand, regarding
the multiclass SVM we tried the following class separation: three classes correspond-
ing to lambda values in intervals (0.1-0.3, 0.3-0.6 and 0.7-0.9) and 9 classes, each
class corresponding to a lambda value from 0.1 to 0.9, incremented with a step of
0.1. All these results were in the same area, of 60% in terms of accuracy, which is
not enough to state that efficient prediction is possible with for our optimization
problem.

In the following section we present the pseudo-qrels hypothesis and we discuss
the obtained results.

5.4.2 Pseudo-relevance information

For the pseudo-relevance information (denoted here pseudo-qrels) hypothesis, the
following retrieved lists are known: QL, RM1 and various RM3 lists corresponding
to different lambda parameter values. We would like to predict the quality of the
RM3 lists, without having the true relevance judgements. Therefore, we simulate
these relevance judgements by fusing all the retrieved lists, cutting at a certain
cut-off k and considering these k top documents as relevant. Finally, with the
pseudo-qrels, we can compute a pseudo AP, for each RM3 retrieved list. We then
keep the lambda parameter for its corresponding list, with the best pseudo AP
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value.
We analyze the results when considering several cut-offs levels and fusion func-

tions. We have tried all cutoffs from 1 to 500, plus the 1000 cutoff levels. This cutoff
represents the number of documents from the top of each list which are considered
as relevant. We show in Table 5.5 only the results for the cutoff levels of 10, 50,
100 and 1000 documents. Next to each MAP value in the table we specify between
brackets the number of considered queries. For a low cutoff there are high chances
that some queries in a collection do not have any retrieved documents in common
to construct the pseudo-qrels. The best results are written in bold. We also display
in Table 5.5 the Robustness Index (RI) for each setup, computed against the initial
query run, QL.

Underlining the best results across different cutoffs, we notice that the cutoff
which yields the most best results, both in terms of AP and RI, is 100. For all
collections we are getting close to the baseline defined by the best fixed lambda on
average. For instance, in the case of TREC5 the best obtained AP result is 0.167,
while the baseline with average fixed lambda gives 0.169. The best possible results
are still out of reach. However, one could notice high improvements in terms of RI
compared to the same average baseline, such as from 0.427 to 0.693, over TREC123
collection.

Table 5.5: Predicting λ using pseudo-qrels, over Robust, WT10G, TREC123 and TREC5 collec-
tions ("cons.q" stands for "considered queries")

Cutoff Robust WT10G
MAP RI (cons.q.) MAP RI (cons.q.)

10 0.288 (241) 0.237 (241) 0.219 (94) 0.106 (94)
50 0.283 (all) 0.325 (all) 0.225 (all) 0.134 (all)
100 0.285 (all) 0.341 (all) 0.225 (all) 0.175 (all)
1000 0.279 (all) 0.060 (all) 0.205 (all) -0.196 (all)

Baselines
Best possible 0.324 x 0.254 x
Best average fixed 0.292 0.365 (all) 0.229 0.155 (all)
QL 0.249 x 0.198 x
RM1 0.267 0.012 (all) 0.193 -0.237 (all)

Cutoff TREC123 TREC5
MAP RI(cons.q.) MAP RI(cons.q.)

10 0.298 (145) 0.614 (145) 0.160 (all) 0.200 (all)
50 0.288 (all) 0.693 (all) 0.167 (all) 0.360 (all)
100 0.288 (all) 0.680 (all) 0.162 (all) 0.400 (all)
1000 0.293 (all) 0.413 (all) 0.159 (all) 0.160 (all)

Baselines
Best possible 0.317 x 0.189 x
Best average fixed 0.297 0.427 (all) 0.169 0.440 (all)
QL 0.229 x 0.149 x
RM1 0.287 0.347 (all) 0.154 0.080 (all)

In the following section we present and then test the hypothesis that require
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prior information.

5.5 Hypothesis with prior information

Due to the difficulty of predicting the value of the lambda parameter without any
information about the quality of the retrieved list, we try to establish the minimum
amount of necessary information in order to obtain a good prediction. This extra
information could refer to which list yields a better AP, between QL and RM1, for
example. This is only small amount of information, compared to the case when the
AP values of QL and RM1 are actually known, for instance.

Using this information, we propose two ways of predicting the lambda parameter,
one based on Jensen-Shannon divergence between lists, in terms of AP and the other
by employing logistic regression over various features.

5.5.1 Jensen-Shannon divergence

The available information consists in the AP values, per query, of the QL and RM1
retrieved document lists. The starting point is to give QL and RM1 weights. The
weight of QL is the following:

w (QL) = AP (QL)
AP (QL) +AP (RM1)

. (5.2)

The weight of RM1 is complementary and it is computed as follows:

w (RM1) = 1 − w (QL) . (5.3)

Afterwards, for each considered lambda parameter, we compute a similarity
score. The score for a particular RM3 list, denoted RM3λ, depends on the QL and
RM1 lists and has the formula:

score (RM3λ) = sim (RM3λ, QL)
sim (RM3λ, QL) + sim (RM3λ, RM1)

. (5.4)

The similarity function sim, chosen for our experiments, is the Jensen-Shannon
divergence (JSD). The similarity score which is the closest to the w (QL) is retained
and its corresponding lambda value represents our prediction.

The results for the Jensen-Shannon hypothesis are presented in Table 5.6, for
Robust, WT10G and GOV2. In the same table we show the number of queries
that achieve the perfect lambda prediction, as well as the number of queries that
predict lambda with an error of 0.1 and 0.2 distance from the best, in absolute value.
The MAP values of QL and RM1 are clearly surpassed, however the prediction of
the best lambda prediction remains an unreached target. Regarding the number
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of queries with perfect match, about 20% success is reached in the case of Robust,
with 45 out of 249 matches. For the same collection, by allowing a prediction error
of 0.2, 65% of the queries are matching, with 162 out of 249 queries.

Table 5.6: Predicting λ knowing the AP of QL and RM1

Robust WT10G GOV2
MAP QL 0.2490 0.1982 0.2917
MAP RM1 0.2668 0.1934 0.2597
MAP for "JSD" lambda 0.3052 0.2393 0.3398
MAP for optimal lambda 0.3247 0.2546 0.3540
# of queries with perfect match λ 45 14 25
# of queries with partial match λ (0.1 err.) 110 38 70
# of queries with partial match λ (0.2 err.) 162 58 106
Total # of queries 249 97 148

In the following section we present and analyze the hypothesis based on logistic
regression.

5.5.2 Logistic regression

Logistic regression is a type of probabilistic statistical classification model and it
estimates the probability of an event occurring. Frequently, logistic regression is
used to refer specifically to the problem in which the variable to predict is binary,
meaning that the number of available categories is two. However, logistic regression
can treat problems with multiple categories and this type of regression is referred
to as multinomial logistic regression. This is our case, since we try to predict the
optimal lambda value among 11 possible (from 0 to 1, with a step of 0.1).

Our hypothesis considers the AP for QL as given information denoted AP(QL)
and AP(RM1), respectively. Based on this, we build seven models (M1 to M7),
each based on several features. For model M6 we consider also the number of
relevant documents per query as given information. We apply the logistic regression
algorithm on each model, aiming to predict the best lambda parameter value for
RM3.

The feature list for is presented below:

M1 AP(RM1), AP(QL)

M2 AP(RM1), AP(QL), AP(QL)/AP(RM1)

M3 AP(RM1), AP(QL), JSD(QL, RM1) (cutoff 100)

M4 0 or 1 (0 if AP(RM1)>AP(QL), 1 otherwise)

M5 features from M2 and M3 together
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M6 AP(RM1)*R, AP(QL)*R, where R is the number of relevant documents per
query.

M7 AP(QL)/AP(RM1)

The obtained results for all of the above models are displayed in Table 5.7. We
compare our results with the optimal lambda results. We notice that the best results
for Robust (0.3141) and GOV2 (0.3482) are obtained with the model M2, which
requires the ratio in terms of AP between QL and RM1. This comes in addition to
the M1 features represented by the performance of the two lists. We mention that
these results are not far from the optimal lambda, which is 0.3247 for Robust and
0.3540 for GOV2 Moreover, the basic QL and RM1 results are clearly surpassed.
However, this is a method requiring the AP values for both QL and RM1 lists,
which means a lot of prior information, being unrealistic in a real world scenario.

Table 5.7: Predicting λ using logistic regression with various feature models

MAP Robust WT10G GOV2
QL 0.2490 0.1982 0.2917
RM1 0.2668 0.1934 0.2597
Logistic regression M1 0.3130 0.2430 0.3457
Logistic regression M2 0.3141 0.2437 0.3482
Logistic regression M3 0.3130 0.2433 0.3455
Logistic regression M4 0.3110 0.2416 0.3435
Logistic regression M5 0.3131 0.2452 0.3481
Logistic regression M6 0.3090 0.2372 0.3400
Logistic regression M7 0.3035 0.2416 0.3419
Optimal lambda 0.3247 0.2546 0.3540

5.6 Other insights

By plotting the lambda value variations for several queries, we searched for a pattern
concerning the connection between the parameter value that yields the best AP and
the fact that either QL or RM1. Figures 5.1 and 5.2 depict the AP variation with
respect to lambda, on a per query basis.

A clear pattern is not to be found, queries having unpredictable behaviour.
However, in Figure 5.1 we can still notice that, in many cases, the maximum AP
value is reached in the proximity of the best performing list, between QL and RM1,
respectively. This cannot be generalized, since there are many exceptions. For
instance, in Figure 5.2, one can notice that, for query 616, the AP of QL is close
to 0.9, while the AP of RM1 is only 0.65. Regardless of this fact, the best lambda
value is 0.2, therefore closer to the weaker RM1. This observation is valid for several
queries, in the same figure.

In this context, we tried to assigned a fixed lambda value per query depending
on which list is better out of QL and RM1. For instance, if QL is performing better
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Figure 5.1: The results for the three test collections by the top levels of precision

we fix λ = 0.2 and λ = 0.8, otherwise. The results for this kind of binary selection
are shown in Table 5.8. The first column, "λ1;λ2" represents the lambda values to
fix with respect to which list is better between QL and RM1. If RM1 yields a better
AP, then the choice is for λ1, otherwise the choice is for λ2. We highlight the best
results per collection and we notice that the best lambda setup is different for all
the three collections. For GOV2 the best result in terms of AP gets the closest to
the optimal value.

Table 5.8: Predicting lambda by fixing values

MAP
λ1;λ2 Robust WT10G GOV2
0.1;0.6 0.3102 0.2418 0.3404
0.1;0.7 0.3110 0.2425 0.3412
0.1;0.8 0.3116 0.2417 0.3400
0.2;0.6 0.3044 0.2417 0.3428
0.2;0.7 0.3052 0.2424 0.3435
0.2;0.8 0.3058 0.2416 0.3424
Optimal lambda 0.3247 0.2546 0.3540
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Figure 5.2: The results for the three test collections by the top levels of precision

5.7 Conclusion

In this chapter we explored the optimization possibilities for the lambda parameter
in the case of language model-based query expansion, more precisely Relevance
Model 3 (RM3).

This research started during a three months research mobility at Technion in
Haifa, Israel and it continued long after the mobility was ended. The optimization
problem we approached represents a hard challenge, raised by the robustness issue
of query expansion methods. If one would be able to predict which query to expand
and how, the expansion will surely be more effective than treating all the queries
in the same way.

In this chapter, we thus presented four approaches to optimize RM3 expansion,
which can be divided into approaches without prior information and approaches
with prior information. For the approaches without any prior information we con-
sidered fitting the data with regression and classifying with SVM. The regression
method predicts AP better than individual predictors, however the correlation co-
efficient is only around 0.60. We also mention that the SVM accuracy is close to
results obtained by chance. The second approach, based on pseudo-qrels yields
some improvements, especially in terms of Robustness Index (RI).
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The Jensen-Shannon similarity based approach and the logistic regression ap-
proach require information on the quality of QL and RM1 lists. The results in these
cases are getting closer to the optimal values. However, the required information
would not be available in a real world context. Moreover, we believe that the meth-
ods require too much information compared to what they can give back in terms
result improvements.

Therefore, the problem of optimizing RM3 parameter remains a hard, open
problem. Of course, some improvements were noticeable, especially in the case of
logistic regression.
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This manuscript gathers the research results obtained during the three years
thesis period. Our work is focused on adapting information retrieval systems to
contexts with the purpose of improving retrieval performance. In this chapter we
summarize our contributions, we recall the proposed methods and their correspond-
ing results and, finally, we pitch the possible research continuity in the future work.

6.1 Conclusion

Our research is positioned in the field of Information Retrieval (IR) and, more pre-
cisely, it aims at adapting IR systems to contexts. The specific context we are
focused on concerns the difficult queries. A query is difficult if it leads IR systems
to failure in terms of performance measures. In our contributions we disambiguate
query terms and we employ query difficulty prediction to selectively treat queries,
all with the purpose of improving retrieval efficiency. More precisely, we proposed
a term disambiguation method employed to re-rank retrieved document lists. Next,
we predict query difficulty by combining existing predictors, with the purpose of
improving prediction quality. In the next contribution, the query difficulty predic-
tors are used as features for learning to discriminate between two different query
expansion types. Finally, we approach a hard optimization problem, also in the
field of query expansion, this time for language modeling-based relevance models.
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We present several hypothesis for this optimization, together with their empirical
results, which however are not conclusive. In the following sections we summarize
our contributions and results.

6.1.1 Word sense discrimination in information retrieval

Our first contribution, presented in Chapter 2, represents a re-ranking method
for IR, based on Word Sense (WS) discrimination. WS disambiguation in IR has
been questioned and declared as ineffective [Sanderson 1994], [Guyot 2008]. In this
context, we have proposed an unsupervised method of WS disambiguation, namely
WS discrimination, and we have proven its efficiency in IR. In order to discriminate
the term senses, the WS discrimination requires unsupervised clustering, for which
we have chosen Naïve Bayes classification and spectral clustering. Our method
shows a remarkable improvement in high rank precision for ambiguous queries. We
believe that this represents a very important aspect, considering the fact that IR
systems are predisposed to failure in the case of this particular type of queries
[Stokoe 2003], [Mothe 2007]. The WordNet linguistic resource has been employed
to check the term ambiguity, by considering the number of senses.

The experiment have been conducted over three TREC collections, TREC7,
TREC8 and WT10G, respectively. We have analyzed the obtained results with
respect to a major approach existing in the literature [Schütze 1995]. When using
a Naïve Bayes-based clustering technique, we have shown that WS discrimination
is indeed able to improve IR performance. However, unlike for the case of spectral
clustering, when the baselines are generally surpassed for all the ambiguous queries,
for the Naïve Bayes-based clustering we have only recorded very small improvement
and only on some particular cases, hence the importance of the clustering technique
used for WS discrimination in IR, which represents one of our conclusions.

Our method exploits the descriptive part of the TREC topics to extract query
context, a level of detail which is not normally available in an IRS. Other works
from the literature use these structural elements and most often the descriptive
part of the query helps in improving the results [He 2004]. However, using the
complete statement of the topic could lead to valid criticism of experiments such
as ours because we exploit this detail. We prove that, if this level of detail is
available, then it can be used in a beneficial way to improve retrieval effectiveness.
However, even if our goal was not to develop mechanisms which can capture in
an optimal way the needed level of detail, we do propose a method to capture
the context of the query and show that our own method for WS discrimination in
IR remains useful. Such a method of contextualization, namely the usage of PRF
[Buckley 1994], has been employed for validating our conclusions in the presence of
automatically generated context. Indeed, contextualizing short texts, such as tweet
contextualization [SanJuan 2011] and query expansion [Ogilvie 2009] is an active
research domain and we think it will be worth considering new contextualization
techniques in our WS discrimination method as a future goal.
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The research conducted in this chapter opens the lead to include in our study
query difficulty prediction, which is already an active research area [Mothe 2005],
[Pehcevski 2010], [Carmel 2010], [Sarnikar 2014], still having a lack in terms of ap-
plications, unfortunately. The fact that our method rather improves poor perform-
ing queries, especially those with multiple ambiguous terms,has driven our research
along the path of query difficulty prediction.

6.1.2 Query difficulty predictors and predictor combinations

Improving poorly performing queries as our disambiguation method does, implies
the identification of difficult queries. We have started research in the field of query
difficulty prediction. Our contribution in this area is divided into two axis.

Firstly, we have shown that it is more robust to consider the average of several
systems as a measure of difficulty to compare the correlations with different predic-
tors, in order to avoid the variability generated by only one system. We have shown
that for systems with a similar Mean Average Precision, the correlation coefficients
with the same predictor of difficulty can be very different. In addition, for TREC7,
the correlation between the Average Precision and the difficulty predictor, when the
best system is chosen, is not statistically significant (p-value).

Secondly, we have shown that if the predictors are heterogeneous in nature (sta-
tistical, linguistic, pre-retrieval, post-retrieval, etc.), their combination may produce
a stronger correlation with the measure of difficulty. We have proposed two linear
combinations, each based on the interpolation of two predictors. COMB1 is the
interpolation between STD and WNS and COMB2 is the interpolation between
STD and IDF . The combinations have been tested over TREC7 and TREC8 col-
lections and, COMB1 has yielded better correlation coefficient over TREC7, while
COMB2 has yielded better correlation coefficient over TREC8. Moreover, COMB1
has been more stable with respect to the p-value in the case of both test collections,
suggesting that this combination is more reliable.

The idea of successfully combining query difficulty predictors suggests an appli-
cation that consists in learning to decide which system would respond best for a
particular query, when various systems are available, all based on query difficulty
prediction queries. This result has paved the road towards our next contribution,
focused on selective IR.

6.1.3 Selective information retrieval based on query difficulty pre-
dictors

In Chapter 4, we have proposed a selective IR method that employs query difficulty
predictors, in order to learn how to discriminate between several types of query
expansion. Our method takes advantage of a large range of query features, including
linguistics features. The method focuses on the query and the ways to expand it,
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while other selective IR methods from the literature deal with other aspects, such as
cross-language IR [Lee 2014], or with query routing in the case of domain specific
collections [Sarnikar 2014]. The SVM has represented a choice for the learning
mechanism.

We have tested our method over Robust, WT10G and GOV2 collections and we
have proven its effectiveness in terms of learning accuracy, Mean Average Precision
and Robustness Index. We have obtained a learning accuracy rate constantly over
80%, MAP improvements up to 24.65% in average and robustness improvements
that reach 250%, results that are statistically significant.

The query difficulty prediction research obtains more and more efficient and
accurate measures, although these predictors are not exploited and utilized enough
in IR systems. We consider that the selective IR represents a realistic and fruitful
framework for query difficulty prediction applications.

6.1.4 Parameter optimization for language modelling-based query
expansion

Our last contribution represents an analysis of the optimization possibilities for the
lambda parameter, in the case of language model-based query expansion, namely
Relevance Model 3 (RM3). This research has been realized in collaboration with
the Technion Institute, from Haifa, Israel.

Other researchers have approached this optimization problem [Lv 2009], unfor-
tunately reporting only marginal results. Tuning the lambda parameter, represents
a hard challenge, raised by the robustness issue of query expansion methods. If one
would be able to predict which query to expand and how, the expansion will surely
be more effective than treating all the queries in the same way.

To approach the research problem, we have presented in Chapter 5 four ap-
proaches to optimize RM3 expansion, which can be divided into approaches with
prior information and approaches without prior information. For the latter ap-
proaches we considered fitting the data with regression and classifying with SVM.
The regression method has predicted AP better than individual predictors, how-
ever the correlation coefficient is only around 0.60. We also mention that the SVM
accuracy has been not very different to results obtained by chance. The second ap-
proach, based on pseudo-qrels has yielded some improvements, especially in terms
of Robustness Index (RI).

The Jensen-Shannon similarity based approach and the logistic regression ap-
proach require information on the quality of QL and RM1 lists. The results in these
cases have been closer to the optimal values. However, the required information
would not be available in a real world context. Moreover, we believe that the meth-
ods require too much information compared to what they can give back in terms
result improvements. The most noticeable improvements have been obtained in the
case of logistic regression.
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Therefore, the problem of optimizing RM3 parameter remains a hard, open
problem.

6.2 Future work

The research conducted during this thesis have yielded good and interesting results.
We are currently investigating several hypothesis that have emerged from the work
presented in this manuscript. The obtained results have raised research questions
that would be interesting to verify. We detail in the following sections our research
leads for future work.

6.2.1 Redefining difficulty

Query difficulty could be defined in many ways, depending on the context. For
instance in the TREC context, a topic can be considered difficult when "the median
of the average precision (AP) scores of all participants for that topic is below a given
threshold (i.e., half of the systems score lower than the threshold)" [Carmel 2006].
From another perspective, a topic could be considered difficult when it is too short,
or when it contains ambiguous terms. However, a query could be easy for an IR
system, but hard for another, making the system dependant difficulty worth to be
studied.

Having all this in mind, we could try to find better ways to characterize query
difficulty. One idea would be to see the terms as vertexes in a co-occurrence graph
and to analyze the queries employing graph theory methods. Another lead would be
to check the correlation between query difficulty and performance measures other
than Average Precision, which is generally employed.

6.2.2 Latent Dirichlet allocation for selective IR

Query difficulty prediction is also related to estimating the retrieval score of an
IRS, since a query is considered to be difficult or easy for a specific IRS depending
on the score of the respective system. Furthermore, a method for estimating (or
predicting) the score of an IRS can also be used for selective IR. Understanding
the behavior of a good IRS and the behavior of a bad IRS is the key in solving
this problem. Intuitively, a "good" system should return results on a specific topic
(related to the query), while an average (or "bad") system will return results from
various topics, since not all the documents will be relevant. This statement also
represents the basis of the clarity score [Cronen-Townsend 2002b].

In this context, we aim at employing Latent Dirichlet allocation (LDA) to model
the topics within a document collection in our future work. Then, by analyzing the
global topic distribution generated by the results retrieved by an IRS, we can figure
out if the behaviour of the system is "good" or "bad". A closed formula based on the
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global topic distribution could be used to determine the behaviour of the IRS. In
the context of selective IR, we will choose the system that shows the best behavior
on each query. Alternatively, we could use the closed formula to determine whether
a query is difficult or not for a specific system, or to rank a set of IR systems.

6.2.3 Features for learning in selective IR

We have employed features extracted [Chifu 2014] (see Chapter 5). Based on a
current research project, we try to extend our feature set, based on features from
learning to rank data sets. We believe that useful information could be extracted
from this kind of features.

Another feature extraction method that we are currently exploring is the appli-
cation of convolutional neural networks over textual information from documents
and queries. This type of neural network is widely employed in computer vision,
but also in natural language processing. The network processes the raw data and
extracts its own low level features, also called "deep" features.

Based on the obtained features, we could learn how to select the best IR system
parameter configuration, or to classify queries by difficulty.
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